Optimization of Pu-238 Production in the Advanced Test Reactor

Braden Burt Brigham Young University, Idaho
Logan Carpenter Brigham Young, University, Idaho
Emory Colvin Oregon State University
Spencer Ercanbrack Idaho State University
Justina Freilich Oregon State University
Reed Herner Georgia Institute of Technology
Takanori Kajihara Texas A&M University
Jared Magnusson Brigham Young University
Objective

&

Background
Create an ATR irradiation design meeting radiological exposure and safety standards which, with HFIR, can produce 1.5 kg Pu-238 annually by 2025.
Commonly Used Terms

- ATR - Advanced Test Reactor at Idaho Natl. Lab
- HFIR - High Flux Isotope Reactor at Oak Ridge Natl. Lab
- MMRTG - Multi-Mission Radioisotope Thermoelectric Generator
- Target Rod - Pellet stack assembly with cladding, plenum, and spacers
- Pellet - NpO_2 - Al powder mixed and pressed together
- Plenum - Space for fission gases to go during irradiation
- Cladding - Outer aluminum coating of pellet stack
- Basket - Aluminum casing that holds targets in place
- Irradiation Facility - Aluminum container holding target baskets
- I-Position/Channel - Where target rods are placed on ATR periphery
- B-Position/Channel - Where target rods are placed closer to ATR fuel lobes
- Np-237 - Neptunium isotope that decays into plutonium when irradiated
- Pu-238 - Plutonium isotope used in RTGs for spacecraft missions
- Pu-236 - Plutonium isotope, decay daughters include 2.62 MeV gammas
Pu-238 Reaction Scheme

Reaction schemes for transmuting Np into Pu (Credit: Patent US 6896716 B1 (2005))
MMRTGs

Multi-Mission Radioisotope Thermoelectric Generators

Generator running on heat produced from radioactive decay of ^{238}Pu

Missions are typically labeled in required W_e (electric watts)

Credit: NASA
The ATR

- Irradiation of Np-237 at ATR & HFIR
- HFIR limited to 300-500g (using all positions)
- ATR I and B positions most readily available
Design Specs & Geometry
Design Positions

- **Small I**: 4 Positions, 4 Targets
- **Medium I**: 16 Positions, 128 Targets
- **Large I**: 4 Positions, 88 Targets
- **Large B**: 4 Positions, 4 Targets
- **Small B**: 7 Positions, 7 Targets
Design Positions Cont.

- Water Jacket
- Basket
- Water Jacket
- Irradiation Facility
- Cladding
- Pellet Stack
Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Rod Length</td>
<td>40 inches MAX</td>
</tr>
<tr>
<td>Pu-236 Concentration</td>
<td>2 ppm MAX</td>
</tr>
<tr>
<td>NpO$_2$- Al Pellet Concentration (volumetric)</td>
<td>30% MAX</td>
</tr>
<tr>
<td>Pu-238 Quality</td>
<td>87% MIN</td>
</tr>
<tr>
<td>Pu-238 Conversion Ratio</td>
<td>10% MIN</td>
</tr>
</tbody>
</table>
Methodology
Method

- Used previous results to define optimization scope
- Modeled in Serpent
 - Used depletion analysis to observe material levels
 - Simplified lattice structures for ease of editing
- Advantages of Serpent over MCNP
 - Runs faster
 - Advanced lattice types
- Idaho National Laboratory’s High Performance Computing system used for modeling
Results
Range of Analysis

- Varied target length from 35”, 40”, and 48”
- Increased initial NpO₂ conc. from 20% to 50%
 - 2% step increments
- Added targets in alternative positions in ATR
 - Small and Large B-Positions
 - Small I-Positions
Longer targets have superior:

- Annual Pu-238 Yield (200-300 g), Pu-236 Concentration (<2 ppm), and Pu Quality (96-98%)
Small I-Positions

- Low annual Pu-238 production
- 6-9% Conversion ratio
- 87-91% Quality
Large B-Positions

- Higher annual Pu-238 production than small I-positions
- Pu-236 concentration increase to 3-4 ppm, closer to reactor fuel
- 10-14% conversion ratio, Quality only acceptable at high pellet conc.
Small B-Positions

- Significant annual Pu-238 production from only 7 rods
- Pu-236 concentration unacceptable at 6-8 ppm
- 16-20% Conversion Ratio, but <83% Quality Unacceptable
Individual Position Yield

40” Rod, 30% NpO₂

Note: Large I positions have 22 rods per position and medium I positions have 8. All other positions have 1 rod/position. Production increases as positions are used together.
Pu-238 Production/Position

40” Rod, 30% NpO₂

<table>
<thead>
<tr>
<th>Position</th>
<th>Target Quantity</th>
<th>(^{238}\text{Pu}) Production (g)</th>
<th>(^{236}\text{Pu}) Conc. (ppm)</th>
<th>(^{238}\text{Pu}) Quality (%)</th>
<th>(^{238}\text{Pu}) Conversion Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large I</td>
<td>22</td>
<td>27.05</td>
<td>1.50</td>
<td>97.01</td>
<td>2.16</td>
</tr>
<tr>
<td>Medium I, inner</td>
<td>8</td>
<td>12.19</td>
<td>1.33</td>
<td>96.07</td>
<td>2.68</td>
</tr>
<tr>
<td>Medium I, outer</td>
<td>8</td>
<td>12.80</td>
<td>1.39</td>
<td>96.09</td>
<td>2.81</td>
</tr>
<tr>
<td>Small I</td>
<td>1</td>
<td>3.86</td>
<td>1.54</td>
<td>90.07</td>
<td>6.79</td>
</tr>
<tr>
<td>Large B</td>
<td>1</td>
<td>6.55</td>
<td>3.43</td>
<td>86.94</td>
<td>11.50</td>
</tr>
<tr>
<td>Small B</td>
<td>1</td>
<td>10.34</td>
<td>6.46</td>
<td>80.01</td>
<td>18.15</td>
</tr>
</tbody>
</table>
Fission Rate/Thermal Flux

Neutron Capture
Heat distribution from Serpent

- Track total heating deposition for each target rod
- Calculate decay heat in each target rod
Analysis & Recommendations
Design Recommendations

Max Yield Design:

778.04 g of Pu-238 @ 96.72%, 3.34 ppm (Pu-236)

- 48” Rods, 50% NpO₂, All I and B positions
- Ran full core instead summing individual positions; interactions are significant

Conservative Yield Design:

350.58 g of Pu-238 @ 96.32%, 1.63 ppm (Pu-236)

- 40” Rods, 30% NpO₂, All I and Large B positions (no Small B)
Stockpile Enrichment

Assuming 16 kg of usable 78% Pu available in current stockpile:

<table>
<thead>
<tr>
<th>Design</th>
<th>Annual 87% Pu-238 (kg)</th>
<th>Pu to Add from Stockpile (kg)</th>
<th>Stockpile Gone (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All I and B Positions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48” Rods, 50% NpO₂</td>
<td>1.456</td>
<td>0.869</td>
<td>18</td>
</tr>
<tr>
<td>I and Large B Positions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40” Rods, 30% NpO₂</td>
<td>0.6445</td>
<td>0.377</td>
<td>42</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion & Future Work

ATR/HFIR production can meet NASA’s goal, but with serious concessions in quality and ^{236}Pu. In addition, ATR/HFIR positions are not always available.

1. Flux Traps and other High-Priority positions
 a. Deal with high Pu-236 levels, low Pu-238 quality

2. Pure Np-237 Pellets
 a. Deal with high Pu-236 levels, low conversion ratio
Acknowledgements

- This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517.
- We wish to thank Dr. Herring from CSNR, Brian Gross, Doug Crawford, and Mark DeHart from INL, Dr. Paul Wilson from the University of Wisconsin, and Jaakko Leppänen from VTT for their support of this project.
- Previous project members have made invaluable contributions: Ashoak Nagarajan, Dominik Fritz, Grace Marcantel, Lucas Beveridge, Joshua Rhodes, Tyler Gates, and John Kuczek.
References

Questions?

Scrapped Design 5

Scrapped Design 6

Background Design Results Analysis Future Work
Extra Slides
Pu-236 Daughters

Pu-236 Daughters Cont.

Production of Hazardous Decay Daughters of Pu-236

- TI-208
- Pb-212
- Bi-212
Pu Trends Over Cycle Length

48” Rod, 30% NpO₂

Note: Small B positions do not include B7 (for HSIS).
What about the 1993 study*?

<table>
<thead>
<tr>
<th></th>
<th>1993 Study</th>
<th>2019 Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR Positions Utilized</td>
<td>3 modified Flux Traps, Large B, Small B, Small I</td>
<td>Large I, Medium I, Small I, Large B</td>
</tr>
<tr>
<td>Operational Cycle</td>
<td>288 days at power, 72 day shutdown (24/6)</td>
<td>186 days at power, 180 day shutdown (62/60)</td>
</tr>
<tr>
<td>Power Level</td>
<td>200 MW</td>
<td>105 MW</td>
</tr>
<tr>
<td>237Np Irradiated</td>
<td>102.1 kg</td>
<td>12.76 kg</td>
</tr>
<tr>
<td>238Pu Produced</td>
<td>11.35 kg</td>
<td>350 g</td>
</tr>
<tr>
<td>238Pu < 2 ppm</td>
<td>1.07 kg</td>
<td>~315 g</td>
</tr>
</tbody>
</table>

- PFS-3 Design Specification for ATR not incorporated in previous designs. Increases target size by 90%.
- Only Design 2 from previous year runs successfully.
- MCNP did not include $^{237}\text{Np}(\gamma,\text{n})^{236}\text{Np} \rightarrow ^{236}\text{Pu} + \beta^-$ process.
2018 Results

<table>
<thead>
<tr>
<th>Design</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Ratio</td>
<td>0.038</td>
<td>0.030</td>
<td>0.033</td>
<td>0.025</td>
</tr>
<tr>
<td>Pu-238 (g)</td>
<td>129</td>
<td>204</td>
<td>193</td>
<td>267</td>
</tr>
<tr>
<td>Quality (%)</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Pu 236 (ppm)</td>
<td>1.17</td>
<td>1.08</td>
<td>1.28</td>
<td>1.65</td>
</tr>
<tr>
<td>Number of rods</td>
<td>104</td>
<td>208</td>
<td>184</td>
<td>332</td>
</tr>
<tr>
<td>Analysis Factor</td>
<td>1.0000</td>
<td>0.6001</td>
<td>0.6783</td>
<td>0.3088</td>
</tr>
</tbody>
</table>