Application of Serpent in EU FP7 project FREYA: Fast Reactor Experiments for hYbrid Applications

E. Fridman
Outline

• Overview of FREYA project

• Serpent models of VENUS-F critical cores

• Serpent vs. MCNP

• Serpent vs. experimental data

• Summary
EU/FP7 FREYA project

- FREYA - Fast Reactor Experiments for hYbrid Applications
 - EURATOM 7th Framework Program

- Support for design and licensing of ADS and LFR systems
 - MYRRHA – Multi-purpose hYbrid Research Reactor for High-tech Applications
 - ALFRED – Advanced LFR European Demonstrator

- Sub-critical and critical experiments in VENUS-F facility
 - SCK\textcdot CEN, Mol, Belgium
VENUS-F facility

- **VENUS**: water-moderated zero power facility
 - E.g. OECD VENUS-2 MOX benchmark

- **VENUS-F**: fast zero-power facility
 - Operation in critical or sub-critical mode
 - Fuel: metallic U rodlets, 30 w% U-235
 - “Coolant”: solid lead blocks
 - Core dimensions (xyz): 97 × 97 × 60 cm
Critical core configurations in FREYA

- Several **critical** VENUS-F cores have been investigated
 - Reflect some basic features of MYRRHA and ALFRED
 - **Most** of them were **modeled with Serpent**

- **CR0** – reference critical core

- **CC5** – “clean” MYRRHA core mock-up

- **CC8** – “full” MYRRHA core mock-up
 - several MYRRHA In-Pile Sections (IPSs)
 - graphite blocks simulating MYRRHA BeO reflector

- **CC6 = CC5 core + ALFRED island**
Fuel assembly configurations: transition from CR0 to CC’s cores

CR0

U metal

Lead

Al$_2$O$_3$

CC5, CC6, CC8
Axial core channels

- Fuel assy
- Lead assy
- Safety rod
- Control rod
- Exp. Fuel assy
- Exp. assy G1
- Exp. assy G3
Considered FREYA cores

CR0 – reference critical core

CC6 – CC5 core with ALFRED siland

CC5 – clean MYRRHA mock-up

CC8 – full MYRRHA mock-up
Serpent models of VENUS-F critical cores
General setup

• Very detailed Serpent core models
 – Fully resolved fuel assemblies, control rods, and other structures
 – Based on MCNP input provided by SCK·CEN

• XS
 – Serpent JEFF3.1 library

• Neutron histories
 – ~4 billion active neutron histories
 – 1M neutron histories, 4000 active and 200 skipped cycles
 – 1σ uncertainty on k-eff is about 2-3 pcm
Serpent vs. MCNP: CR0 core
Approach to comparison

- Serpent model was built from the reference MCNP input
- Dimensions, material compositions, etc. were preserved
- Identical ACE files for Serpent and MCNP
- Identical number of neutron histories

The goals:
- To assure the consistency of the Serpent model
- To compare Serpent/MCNP performance
Serpent vs. MCNP: radial core layout

MCNP Vised plotter

Serpent plotter
Serpent vs. MCNP: integral parameters

<table>
<thead>
<tr>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-eff</td>
<td>13 pcm</td>
</tr>
<tr>
<td>Gen. time, sec</td>
<td>0.2%</td>
</tr>
<tr>
<td>Beta-eff, pcm</td>
<td>3 pcm</td>
</tr>
</tbody>
</table>
Serpent vs. MCNP: neutron flux spectra in fuel
Serpent vs. MCNP: diff. in neutron flux spectra
Serpent vs. MCNP: Norm. power distribution

Normalized radial power

Relative difference
Serpent vs. MCNP: summary

• Very good agreement between Serpent and MCNP
 – Integral parameters, power distribution, flux spectra
 – Typically within statistics

• Consistency of the Serpent model is demonstrated

• Serpent outperforms MCNP
 – Runs 9.3 times faster
Serpent results vs. experimental data
Measured parameters calculated by Serpent

- Integral parameters
 - k-eff, β-eff, control rod worth

- Axial and radial traverses
 - Axial or radial distribution of fission rates

- Spectral indices - fission rates ratio e.g.:
 - F28 = Fission U238 / Fission U235
 - F49 = Fission Pu239 / Fission U235

- Lead void reactivity effect (CC6 core)

- **Selected** results are in the next slides
Selected results: CC5 core
Spectral indices

<table>
<thead>
<tr>
<th>Position</th>
<th>EFA-1</th>
<th>EFA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F28/F25</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>F49/F25</td>
<td>1.00</td>
<td>1.03</td>
</tr>
<tr>
<td>F40/F25</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>F42/F25</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>F37/F25</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>F51/F25</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>
Spectral indices

- Measured in experimental fuel assemblies (EFA-1&2)
Spectral indices

- About 10% discrepancy in F28/F25
- The reasons should be further investigated
Axial traverses in EFA-1

U-235

Pu-239

Np-237
Axial traverses in EFA-2

U-235

Normalized fission rate

Distance from the bottom of the active fuel, mm

U-238

Normalized fission rate

Distance from the bottom of the active fuel, mm

Pu-239

Normalized fission rate

Distance from the bottom of the active fuel, mm

Np-237

Normalized fission rate

Distance from the bottom of the active fuel, mm
Axial traverses: fissile vs. fertile
Neutron thermalization – lower reflector

Axial core layout (X-Z)

Norm. fission rates

Thermal flux
Neutron thermalization – radial reflector

Axial core layout (Y-Z)

Thermal flux
Radial traverse

Measured positions

Graph showing radial traverse vs. distance from the core center in cm.
Selected results: CC6 core
Lead void reactivity

Estimated by “voiding” fuel assemblies in ALFRED island

Good agreement between calculations and experiment:
• C/E Case A: 0.96
• C/E Case B: 1.01
Selected results: CC8 core
Radial traverse

Measured positions

U-238 F.C.

U-235 F.C.
C/E: spectral indexes in CC8

<table>
<thead>
<tr>
<th>Position</th>
<th>EFA-1</th>
<th>EFA-2</th>
<th>EFA-2</th>
<th>IPS-1</th>
<th>IPS-2</th>
<th>C-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1,1)</td>
<td>(-2,1)</td>
<td>(-3,1)</td>
<td>(-4,1)</td>
<td>(4,1)</td>
<td>(-5,1)</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.91</td>
<td>0.98</td>
<td>0.92</td>
<td>0.43</td>
<td>0.33</td>
<td>0.78</td>
</tr>
<tr>
<td>F49/F25</td>
<td>1.01</td>
<td>-</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>F37/F25</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F40/F25</td>
<td>0.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F42/F25</td>
<td>0.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F51/F25</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary

• Serpent vs. MCNP – very good agreement (CR0 core)
 – Serpent runs much faster than MCNP (about 9 times)

• Serpent vs. experiment – generally good agreement
 – F49 and F37 spectral indexes
 – Axial and radial traverses, Lead void reactivity effect,

• But
 – Large differences in F28/F25 spectral index
 – Same trend for MCNP
Acknowledgment

This work was supported by the 7th Framework Program of the European Commission (EURATOM) through the FREYA Project under the contract FP7-2010-269665.
Thank you!