An updated approach to calculation of diffusion coefficients

E. Fridman, J. Leppänen
Outline

- Diffusion coefficient from P1 equations
- Different forms of transport correction
- Numerical example
- Conclusions
Getting diffusion coefficient from P1 equations

• Multi-group P1 equation in 1D:

\[
\frac{d}{dx} \phi_{1,g} + \Sigma_{t,g} \phi_{0,g} = \sum_{g'} \Sigma_{s0,g'\rightarrow g} \phi_{0,g'} + S_{0,g}
\]

\[
\frac{1}{3} \frac{d}{dx} \phi_{0,g} + \Sigma_{t,g} \phi_{1,g} = \sum_{g'} \Sigma_{s1,g'\rightarrow g} \phi_{1,g'} + S_{1,g}
\]

• \(\phi_0 \) and \(\phi_1 \) – 0th and 1st flux moments
• \(\Sigma_0 \) and \(\Sigma_1 \) – 0th and 1st moments of scattering XS
• \(\Sigma_t \) – total XS
• \(S \) - sources
Getting diffusion coefficient from P1 equations

• Multi-group P1 equation in 1D:

\[
\frac{d}{dx} \phi_{1,g} + \Sigma_{t,g} \phi_{0,g} = \sum_{g'} \Sigma_{s_0, g' \rightarrow g} \phi_{0,g'} + S_{0,g}
\]

\[
\frac{1}{3} \frac{d}{dx} \phi_{0,g} + \Sigma_{t,g} \phi_{1,g} = \sum_{g'} \Sigma_{s_1, g' \rightarrow g} \phi_{1,g'} + S_{1,g}
\]

• Diffusion coeff. can be derived from the 2nd equation:
 – Assuming isotropy of the sources $\rightarrow S_{1,g} = 0$
 – Using Fick’s law:
Getting diffusion coefficient from P1 equations

- Multi-group P1 equation in 1D:
 \[
 \frac{d}{dx} \phi_{1,g} + \Sigma_{t,g} \phi_{0,g} = \sum_{g'} \Sigma_{s0,g'\rightarrow g} \phi_{0,g'} + S_{0,g}
 \]
 \[
 \frac{1}{3} \frac{d}{dx} \phi_{0,g} + \Sigma_{t,g} \phi_{1,g} = \sum_{g'} \Sigma_{s1,g'\rightarrow g} \phi_{1,g'} + S_{1,g}
 \]

- Diffusion coeff. can be derived from the 2nd equation:
 - Assuming isotropy of the sources \(\rightarrow S_{1,g} = 0 \)
 - Using Fick's law:
 \[
 J_g = -D \frac{d}{dx} \phi_{0,g}
 \]
 \[
 \phi_{1,g} = -\left(\frac{1}{3} \Sigma_{t,g} - \frac{1}{\phi_{1,g}} \sum_{g'} \Sigma_{s1,g'\rightarrow g} \phi_{1,g'} \right) \frac{d}{dx} \phi_{0,g}
 \]
Getting diffusion coefficient from P1 equations

• Multi-group P1 equation in 1D:

\[
\frac{d}{dx} \phi_{1,g} + \Sigma_{t,g} \phi_{0,g} = \sum_{g'} \Sigma_{s0,g'\rightarrow g} \phi_{0,g'} + S_{0,g}
\]

\[
\frac{1}{3} \frac{d}{dx} \phi_{0,g} + \Sigma_{t,g} \phi_{1,g} = \sum_{g'} \Sigma_{s1,g'\rightarrow g} \phi_{1,g'} + S_{1,g}
\]

• Diffusion coeff. can be derived from the 2nd equation:
 – Assuming isotropy of the sources \(\rightarrow S_{1,g} = 0 \)
 – Using Fick’s law:
 \[
 \mathbf{J}_g = -D \frac{d}{dx} \phi_{0,g}
 \]
 \[
 \phi_{1,g} = -\frac{1}{\Sigma_{t,g} - \sum_{g'} \Sigma_{s1,g'\rightarrow g} \phi_{1,g'}} \frac{d}{dx} \phi_{0,g}
 \]
Complexities in calculations of diffusion coefficient

\[\sum_{i,g} - \frac{\sum_{s1,g' \rightarrow g} \phi_{1,g'}}{\phi_{1,g}} \]

- Current spectra is needed - not easy to calculate

- What can be done? Examples:
 - Out-scatter approximation
 - Replacing \(\phi_1 \) by \(\phi_0 \)
 - Hydrogen transport correction
 - P1 spectral calculations
Some relevant references:

Out-scatter approximation
Out-scatter approximation

• Additional assumption:
 – P1 in-scatter and out-scatter sources are equal

\[
\sum_{g'} \sum_{s_1, g' \rightarrow g} \phi_{1, g'} \approx \sum_{g'} \sum_{s_1, g \rightarrow g'} \phi_{1, g}
\]
Out-scatter approximation

- Additional assumption:
 - P1 in-scatter and out-scatter sources are equal

\[\sum_{g'} \Sigma_{s1,g' \to g} \phi_{1,g'} \approx \sum_{g'} \Sigma_{s1, g \to g'} \phi_{1,g} \]

- Then:

\[\frac{\sum_{g'} \Sigma_{s1,g' \to g} \phi_{1,g'}}{\phi_{1,g}} \approx \frac{\sum_{g'} \Sigma_{s1, g \to g'} \phi_{1,g}}{\phi_{1,g}} = \sum_{g'} \Sigma_{s1,g \to g'} = \Sigma_{s1,g} \]

- Typical out-scatter form of \(\Sigma_{tr,g} \)
 - Knowledge of current spectra is not required
 - Current Serpent approach

\[\Sigma_{tr,g} = \Sigma_{t,g} - \Sigma_{s1,g} = \Sigma_{t,g} - \mu_g \Sigma_{s0,g} \]
Out-scatter approximation

- Out-scatter and in-scatter sources are not everywhere close (ratio is shown)
- Difference in fast region can result in “too strong” transport correction
 - Serpent results: UO$_2$ PWR assembly, current spectra from 0-D P1 equation (modified B1)
Hydrogen transport correction
Hydrogen transport correction

• Idea:
 – Obtain H-transport correction curve: \(\frac{\Sigma_{tr}}{\Sigma_T} \)
 – From H-only slab with a fixed fission source
 – Use the H-correction curve to modify \(\Sigma_{tr} \) from lattice calculations

• Assumption:
 – H is a major source for scattering anisotropy (\(\mu \approx 2/3A \))

• Procedure:
 1. Calculate \(\Sigma_{tr,all}, \Sigma_{tr,H}, \Sigma_{T,H} \)
 2. Calculate \(\Sigma_{tr,H} = \Sigma_{T,H} \times \text{Correction curve} \)
 3. Calculate \(\Sigma_{tr,all} = \Sigma_{tr,all} - \Sigma_{tr,H} + \Sigma_{tr,H}^{corr} \)

• Described in details in MC2013 paper by Bryan Herman
 – “Improved Diffusion Coefficients Generated From Monte Carlo Codes”
Hydrogen transport correction curve

- Available in version 2.1.27
- H$_2$O curve is shown
Diffusion coefficient: Serpent vs. Casmo

<table>
<thead>
<tr>
<th></th>
<th>Casmo</th>
<th>Serpent</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Out-scatter</td>
<td>H-correction</td>
<td>B1</td>
</tr>
<tr>
<td>g1</td>
<td>1.47534</td>
<td>1.55880</td>
<td>1.48000</td>
<td>1.44966</td>
</tr>
<tr>
<td>g2</td>
<td>0.42139</td>
<td>0.41320</td>
<td>0.43040</td>
<td>0.44533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g1 - 5.7%</td>
<td>0.3%</td>
<td>-1.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g2 - 1.9%</td>
<td>2.1%</td>
<td>5.7%</td>
</tr>
</tbody>
</table>
Some test problems
2D PWR core

- Serpent - few-group XS + reference solution
- DYN3D - nodal diffusion calculations
- Verify DYN3D results vs. full core Serpent solution

Reference PWR Core
1 – 3.1w/o U-235 + 16 WABAs
2 – 2.3w/o U-235
3 – 2.3w/o U-235
R – Reflector
2D PWR core: Radial power distribution
3D PWR core – OECD MOX benchmark

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U 4.2% (CR-D)</td>
<td>U 4.2% (CR-A)</td>
<td>U 4.2%</td>
<td>U 4.5% (CR-S)</td>
<td>U 4.5% (CR-S)</td>
<td>U 4.5% (CR-C)</td>
<td>U 4.5% (CR-C)</td>
<td>U 4.2%</td>
</tr>
<tr>
<td></td>
<td>35.0</td>
<td>17.5</td>
<td>22.5</td>
<td>0.15</td>
<td>37.5</td>
<td>17.5</td>
<td>0.15</td>
<td>32.5</td>
</tr>
<tr>
<td>B</td>
<td>U 4.2%</td>
<td>U 4.2%</td>
<td>U 4.5%</td>
<td>M 4.0%</td>
<td>U 4.2%</td>
<td>U 4.2%</td>
<td>M 4.0%</td>
<td>U 4.5%</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>17.5</td>
<td>32.5</td>
<td>22.5</td>
<td>0.15</td>
<td>32.5</td>
<td>0.15</td>
<td>17.5</td>
</tr>
<tr>
<td>C</td>
<td>U 4.2% (CR-A)</td>
<td>U 4.2% (CR-C)</td>
<td>U 4.2%</td>
<td>U 4.2%</td>
<td>M 4.3%</td>
<td>U 4.5% (CR-B)</td>
<td>M 4.3%</td>
<td>U 4.5%</td>
</tr>
<tr>
<td></td>
<td>22.5</td>
<td>32.5</td>
<td>22.5</td>
<td>0.15</td>
<td>22.5</td>
<td>17.5</td>
<td>0.15</td>
<td>35.0</td>
</tr>
<tr>
<td>D</td>
<td>U 4.5%</td>
<td>M 4.0%</td>
<td>U 4.2%</td>
<td>M 4.0%</td>
<td>U 4.2%</td>
<td>U 4.5% (CR-S)</td>
<td>M 4.3%</td>
<td>U 4.5%</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>22.5</td>
<td>0.15</td>
<td>37.5</td>
<td>0.15</td>
<td>20.0</td>
<td>0.15</td>
<td>20.0</td>
</tr>
<tr>
<td>E</td>
<td>U 4.5% (CR-S)</td>
<td>U 4.2%</td>
<td>U 4.2%</td>
<td>U 4.2%</td>
<td>U 4.2% (CR-D)</td>
<td>U 4.5%</td>
<td>U 4.5%</td>
<td>U 4.2%</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>0.15</td>
<td>22.5</td>
<td>0.15</td>
<td>37.5</td>
<td>0.15</td>
<td>17.5</td>
<td>17.5</td>
</tr>
</tbody>
</table>
| F | M 4.3% | U 4.2% (CR-S) | M 4.3% | U 4.5% (CR-S) | U 4.5% | M 4.3% | U 4.5% | CR-A | Control Rod Bank A
| | 32.5 | 17.5 | 17.5 | 20.0 | 0.15 | 0.15 | 32.5 | CR-B | Control Rod Bank B
| | 17.5 | 0.15 | 0.15 | 0.15 | 17.5 | 32.5 | 17.5 | CR-C | Control Rod Bank C
| | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | CR-D | Control Rod Bank D
| | U 4.5% (CR-C) | M 4.0% | U 4.5% | M 4.3% | U 4.2% (CR-S) | U 4.5% | CR-SA | Assembly Type
| | 0.15 | 32.5 | 17.5 | 17.5 | 32.5 | 17.5 | 17.5 | CR-SA | Shutdown Rod Bank A
| | U 4.2% | U 4.5% | M 4.3% | M 4.3% | U 4.2% | CR-SD | CR-SC | B | CR-SC | Shutdown Rod Bank C
| | 32.5 | 17.5 | 35.0 | 20.0 | 17.5 | 32.5 | 17.5 | B | O | Ejected Rod

- Serpent - few-group XS + reference solution
- DYN3D - nodal diffusion calculations
- Verify DYN3D results vs. full core Serpent solution
3D PWR core: Radial power distribution
Summary and future work

• H-transport correction was implemented in Serpent 2.1.27

• LWR diffusion coefficients are consistent with Casmo

• Somewhat improved nodal diffusion results…

• But some other factors should be accounted for
 – Discontinuity factors
 – Reflector models
 – Leakage correction

• H-like correction can be used for other scatters
 – deuterium, graphite, …
 – importance (anisotropy) decreases with A ($\mu \approx 2/3A$)
 – further investigation is required
Thank you!
Generation of few-group diffusion coefficients

- $\Sigma_{tr,g}$ can be used for the generation of D_G in two ways:

Option 1: Collapsing of $\Sigma_{tr,g}$

$$
\Sigma_{tr,G} = \sum_{g \in G} \Sigma_{tr,g} \phi_g
\Rightarrow
D_G = \frac{1}{3 \Sigma_{tr,G}}
$$
Generation of few-group diffusion coefficients

- $\Sigma_{tr,g}$ can be used for the generation of D_G in two ways:

Option 1: Collapsing of $\Sigma_{tr,g}$

$$
\Sigma_{tr,G} = \frac{\sum_{g \in G} \Sigma_{tr,g} \phi_g}{\sum_{g \in G} \phi_g} \Rightarrow D_G = \frac{1}{3 \Sigma_{tr,G}}
$$

Option 2: Collapsing of D_g

$$
D_g = \frac{1}{3 \Sigma_{tr,g}} \Rightarrow D_G = \frac{\sum_{g \in G} D_g \phi_g}{\sum_{g \in G} \phi_g}
$$