SERPENT activities at VUJE, a.s.

Tomáš Chrebet
Amine Bouhaddane
František Čajko
Michal Sečanský
Radoslav Zajac

26-29 September 2016
6th International Serpent User Group Meeting at Milan
Outline

During the last year, SERPENT was used mainly in the following activities:

• Calculations of the ALLEGRO core in the frame of the ESNII+ project.
• Optimization of the ALLEGRO core.
• Calculations of the ALLEGRO pin in the frame of the VINCO project.
• Full-core VVER-440 pin power distribution calculation benchmark.
ESNII+ project

The aim is to develop a broad strategic approach to advanced nuclear fission systems in support of the European Sustainable Nuclear Industrial Initiative (ESNII), to ensure efficient coordinated research for the safety of Generation IV nuclear installations.

Gas cooled fast reactor (GFR) presents one of the three European candidate fast reactor types

ALLEGRO: Gas Fast Reactor (GFR), **Potential Site**: Bohunice NPP, Slovakia

ASTRID: Advanced Sodium Technical Reactor for Industrial Demonstration of Sodium Fast Reactor (SFR), **Site**: Marcoule France

ALFRED: Advanced Lead Fast Reactor European Demonstrator of Lead Fast Reactor (LFR)
Potential Site: Cerna Voda, Romania

ALLEGRO

- concept of experimental Gas Cooled Fast Reactor (GFR)
- MOX fuel and carbide fuel
- cooled by helium under the pressure of 7 MPa
- two systems of control assemblies to control reactivity and to shutdown reactor: 6 CSD and 4 DSD rods using boron carbide (B4C) enriched to 70% by B-10 isotope
- operating temperature of ALLEGRO reactor – 530°C for MOX core and 850°C for core loaded by ceramic fuel
- power of the ALLEGRO reactor will be 75MWth
ALLEGRO reactor MOX core:

- 6 experimental assemblies
- 81 MOX fuel assemblies
- 6 Control and Shutdown Devices (CSD)
- 4 Diverse Shutdown Devices (DSD)
- 174 reflector assemblies
- 198 shielding assemblies

Background document:
TEMESVÁRI, E. (CER): ALLEGRO Core Specification, ESNII plus, 15/10/2014, D6.6.1-2, revision 0
Plot of xz - cut (front view) of ALLEGRO MOX core model, y = 0 cm

Plot of yz - cut (side view) of ALLEGRO MOX core model, x = 0 cm
Benchmark goals:

- k-effective
- CSD/DSD worth
- coefficients:
 - Doppler (900 K, 1500 K)
 - Fuel expansion (900 K, 1500 K)
 - Void (3.5 MPa, 0.1 MPa)
 - Diagrid expansion (+200 K, +400 K)

Organizations:

EK-SP24 - Hungarian Academy of Sciences Centre For Energy Research (SERPENT 2.1.24, ENDF/B-VII.0)

PSI - Paul Scherrer Institut (ERANOS 2.2, JEFF3.1)

PSI-S - Paul Scherrer Institut (SERPENT 2.1.23, JEFF 3.1)

NNL - National Nuclear Laboratory (ERANOS 2.0, ERALIB1)

AmecFW - Amec Foster Wheeler (ECCO, JEFF3.1.2)

VUJE-S endf70 - VUJE, a.s. (SERPENT 2.1.21, ENDF/B –VII.0)

VUJE-S jeff311- VUJE, a.s. (SERPENT 2.1.21, JEFF 3.1.1)

BME-KIKO - Hungarian Academy of Sciences Centre For Energy Research (KIKO, JEFF3.1)
Effective multiplication factors

$ k_{\text{eff}} \times$ SERPENT activities at VUJE, a.s.
SERPENT activities at VUJE, a.s.

Total CSD reactivity worth [pcm]

<table>
<thead>
<tr>
<th>Code</th>
<th>Reactivity [pcm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK-SP24</td>
<td>9,420</td>
</tr>
<tr>
<td>PSI</td>
<td>8,600</td>
</tr>
<tr>
<td>PSI-S</td>
<td>9,000</td>
</tr>
<tr>
<td>NNL</td>
<td>9,600</td>
</tr>
<tr>
<td>Amec</td>
<td>9,800</td>
</tr>
<tr>
<td>VUJE-S-endf70</td>
<td>9,400</td>
</tr>
<tr>
<td>VUJE-S-jeff311</td>
<td>9,800</td>
</tr>
<tr>
<td>BME-S</td>
<td>9,200</td>
</tr>
</tbody>
</table>
SERPENT activities at VUJE, a.s.

CSD+DSD worth (Scram)

<table>
<thead>
<tr>
<th></th>
<th>rho [pcm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK-SP24</td>
<td>13,200</td>
</tr>
<tr>
<td>PSI</td>
<td>12,600</td>
</tr>
<tr>
<td>PSI-S</td>
<td>13,000</td>
</tr>
<tr>
<td>NNL</td>
<td>13,400</td>
</tr>
<tr>
<td>Amec</td>
<td>12,800</td>
</tr>
<tr>
<td>VUJE-S-endf70</td>
<td>12,200</td>
</tr>
<tr>
<td>VUJE-S-jeff311</td>
<td>12,400</td>
</tr>
<tr>
<td>BME-S</td>
<td>12,600</td>
</tr>
</tbody>
</table>
SERPENT activities at VUJE, a.s.

Doppler coefficient

DC [pcm/K]

-450
-400
-350
-300
-250
-200
-150

EK-SP24 PSI PSI-S NNL Amec VUJE-S-endf70 VUJE-S-jeff311 BME-S
SERPENT activities at VUJE, a.s.

Fuel expansion coefficient

[pcm/K]

EK-SP24, PSI, PSI-S, NNL, Amec, VUJE-S-endf70, VUJE-S-jeff311, BME-S
SERPENT activities at VUJE, a.s.

Diagrid expansion reactivity increase

-700
-600
-500
-400
-300
-200
-100
0

[

Diagrid exp. +200 K
Diagrid exp. +400 K

EK-SP24 PSI PSI-S NNL Amec VUJE-S-endf70 VUJE-S-jeff311 BME-S
Results of ESNII+ ALLEGRO whole core benchmark:

The obtained deviations characterize the user effects, the modeling uncertainties and the influence of the nuclear data differences altogether, without the possibility of their separation because of the complexity of the benchmark problem.

To identify the reasons of the deviations a step by step procedure is necessary by starting from simple problems (homogenous material, Wigner-Seitz cell in asymptotic approach, SA in asymptotic approach, etc.).
Optimization of the ALLEGRO core.

- Replacement of the ALLEGRO MOX core by UOX core with max. 20% enriched uranium, would bring much easier fuel supply and both non-proliferation and qualification issues would be much simpler.

- The oxide driver core must be designed to deliver adequate conditions in terms of neutron flux, neutron spectrum, dpa and temperature.

- Aim of this activity was investigation of the ALLEGRO UOX core feasibility options.
Design scenarios to explore the feasibility of an ALLEGRO UOX core:

Original MOX concept

UOX Core with added 1 ring of FA and preservation of diameter to height ratio by axial enlargement at power of 37.5 MW_{th} and 75 MW_{th}

UOX Core with added 2 rings of FA and preservation of diameter to height ratio by axial enlargement at power of 37.5 MW_{th} and 75 MW_{th}

UOX Core with added 2 rings of FA and preservation of diameter to height ratio by axial enlargement without 3 experimental positions at power of 37.5 MW_{th} and 75 MW_{th}

Serpent activities at VUJE, a.s.
Irradiation time dependency of k_{eff}
Irradiation time dependency of burnup

- UOX_1ring_37.5MW+axial enlarge
- UOX_1ring_75MW+ axial enlarge
- UOX_2ring_37.5MW+axial enlarge
- UOX_2ring_75MW+axial enlarge
- UOX_2ring_3exp_positions_37.5MW
- UOX_2ring_3exp_positions_75MW
- MOX_81_assem_75_MW
ALLEGRO core optimisation conclusions

• Enlargement of the UOX core by one fuel ring is insufficient compared to the original MOX core – low value of k_{eff}, $k_{\text{eff}} < 1$
• Enlargement by two UOX rings results to equalisation of reactivity reserve in comparison to the MOX core
• Irradiation abilities of enlarged UOX core are at least two times worse than of MOX core
VINCO project

The main objective is to conduct a variety of capacity building activities aiming at strengthening the coordinating role of the “V4G4 CoE” and supporting its member organizations.

Participants: MTA EK (Hungary), UJV (Czech Republic), VUJE (Slovakia), NCBJ (Poland), CEA (France), CVR (Czech Republic)

As was mentioned in the results of ALLEGRO ESNII+ to minimize the user effects, the most simple heterogeneous unit of the reactor, a pin surrounded by the hexagonal cell needs to be calculated. (Calculation of the assembly would raise the very similar modeling problems.)
VINCO benchmark

2D one fuel pin, reflective boundary condition

fuel: MOX and UOX

burnup is to be followed up to 75 MWd/kgU at power density 50 W/cm3

Calculation of keff is defined by fixed buckling.

Branches:
- change of fuel temperature
- change of pin diameter and fuel density
- change of coolant density
Infinite multiplication factors at zero burn up for MOX

- MTA EK ECCO: 1.6322
- VUJE HELIOS: 1.6206
- REZ ECCO: 1.6253
- NCBJ SCALE: 1.6226
- VUJE SERPENT: 1.6180
SERPENT activities at VUJE, a.s.

Infinite multiplication factors at zero burn up for UOX

k_{inf}

- MTA EK ECCO: 1.3965
- VUJE HELIOS: 1.3997
- REZ ECCO: 1.3974
- NCBJ SCALE: 1.4014
- VUJE SERPENT: 1.3966
SERPENT activities at VUJE, a.s.

Infinite multiplication coefficient MOX

Calculated buckling for MOX
Infinite multiplication coefficient UOX

Calculated buckling for UOX
Conclusions of VINCO Project

• SERPENT code has no ability to fix buckling (B2) so k_{inf} values are shown only

• In case of MOX the SERPENT curve of buckling (B2) is crossing the others dependences significantly – the reason is unknown at present

• Now the second phase is running of benchmark focused on 2D MOX, UOX assembly analyses – k_{inf}, reactivity coefficients, kinetic parameters and group constants
Full-core VVER-440 pin power distribution calculation benchmark

The ‘Full-Core’ benchmark is a 2D calculation benchmark based on the VVER-440 reactor core cold state geometry with taking into the account the geometry of explicit radial reflector.

The main task of this benchmark is to test the pin by pin power distribution in fuel assemblies that are placed mainly at the border of the VVER-440 core.

All necessary input data including material composition and dimension specification have been taken from [1]. The dimensions have been taken from the cold state geometry. Although the benchmark specification for temperature of FA’s and moderator was 543.15 K we used the temperature 600 K.

Serpent activities at Vuje, a.s.

Loading pattern of fresh FA at the Full-Core model

Average enrichment of 1.6%
Average enrichment of 2.4%
Average enrichment of 4.25%

FA number 40
FA number 34
FA number 27
Power distribution for the Full-Core model

Referential calculation by MCNP-4C code, ENDF/B-VI library, temperature 543.15 K, 200 mil. nps and 200 000 n. per generation, $k_{\text{eff}} = 1.09216 \sigma = 4E-05$

Serpent 2.1.25
3 500 000 n. per generation and 500 active cycle, ENDF/B-VII.0 library, temperature 600 K, $k_{\text{eff}} = 1.08652E+00 \sigma = 1.3E-05$

In this presentation are shown the preliminary results of this benchmark only because the model and analysis are still under improvements
Relative FA power distribution for the Full-Core model
Relative pin power distribution for FA no. 40 (4.25 %)
Relative pin power distribution for FA no. 34 (2.4 %)
Relative pin power distribution for FA no. 27 (1.6 %)
Summary

SERPENT code has been used at VUJE, a. s. for research activities only:

- ALLEGRO Project:
 1. ESNII+ Project
 2. ALLEGRO Core Optimisation
 3. VINCO Project

- Full-core VVER-440 pin power distribution calculation benchmark
Thank you for your attention

VUJE, a.s.

Okružná 5
918 64 Trnava
Slovak Republic

www.vuje.sk
tomas.chrebet@vuje.sk