New Capabilities for the Chebyshev Rational Approximation method (CRAM)

A. Isotaloa,b
W. Wieselquista
M. Pusac

oaOak Ridge National Laboratory
PO Box 2008, Oak Ridge, TN 37831-6172, USA

bAalto University
PO Box 14100, FI-00076 AALTO, Finland

cVTT Technical Research Centre of Finland
PO Box 1000, FI-02044 VTT Finland,
Chebyshev Rational Approximation Method (CRAM)*

• Fast, accurate depletion algorithm for large systems
 – Overall accuracy almost independent of step lengths

• Limitations
 – Cannot handle source term (model external feed)
 – Some concerns about decay reliability (nuclides whose concentration decreases greatly)

• In this presentation:
 – Solutions to these limitations
 – A method for extracting additional results

Source Term and External Feed

• External feed
 – Continuous flow of material to the modeled composition from outside the modeled composition
 • Molten salt reactors
 • Reprocessing facilities

• Source term models external feed

\[
\frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t) + \mathbf{s}(t)
\]

– Also needed in adjoint calculations for time-integral responses (e.g., total absorption by a nuclide over time)
External Feed*

• CRAM only evaluates matrix exponential, $e^{At} x(0)$ which is the solution of a homogeneous system

• Solution: homogenize the system

$$\frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t) + \mathbf{s}(t) \quad \Rightarrow \quad \frac{d\tilde{\mathbf{x}}(t)}{dt} = \tilde{A}\tilde{\mathbf{x}}(t)$$

 – Constant or exponentially decreasing source term does not affect overall accuracy
 – Polynomial source term reduces maximum accuracy by roughly one digit per order of the highest order polynomial

Substeps*

- Accuracy of CRAM improves rapidly over steps with equal step length and microscopic reaction rates
 - Divide steps into equidistant substeps
 - Improvement is not driven by (sub)step lengths!

- Substeps multiply the number of CRAM solutions required

- Reuse LU-decompositions on substeps:
 - 2/4/8 substeps increase cost by 25/50/100%
 - We call these internal substeps

Extracting Integral Results*

- Add imaginary “tally nuclides” that are produced in proportion to the concentrations of the physical nuclides without the parent being removed

- The final concentration of such nuclide is

\[d_j(T) = \int_0^T \sum w_{j,i} x_i(t) \, dt \]

- Number of fissions tally: \(w_i = \sigma_{i,f} \phi \)
 - Fuel performance codes

- Energy release tally: \(w_i = \sum K_{i,r} \sigma_{i,r} \phi + \lambda_i K_{i,d} \)
 - Local burnups, coupling diagnostics

Energy Release in Burnup Calculations

• Constant power (input) × step length (input) → burnup

• In depletion: power → average flux → composition
 – Not exact
 – Burnup of the compositions differs from assumed

• Tally nuclide for energy release gives the burnup of the compositions
 – A measure of normalization accuracy
 – Were step lengths short enough?
Results: Depletion of Fresh Fuel
Results: Depletion of Used Fuel

Initial, no substeps

Initial, 4 substeps

Feed, no substeps

Feed, 4 substeps
Results: Decay of Spent Fuel

Initial, no substeps

Initial, 4 substeps

Feed, no substeps

Feed, 4 substeps
Results: Order 6 Polynomial Feed Rate for ^{235}U
Results with Lots of Substeps

Depletion of fresh fuel, 64 substeps

Depletion of used fuel, 4 substeps

Depletion of fresh fuel as feed, 64 substeps

Deca of used fuel, 32 substeps
Running Times

• Timings with new CRAM solver of ORIGEN
 – Uses the SuperLU library
 – Library data includes 1946 nuclides and 35,013 transitions
 – Basic depletion solution took 23ms on Intel Xeon E5-1607 and 41ms on AMD Optron 6212

• Source term for all nuclides
 – Depletion: ~10% + 2.5% per highest source term order
 – Decay: ~10% + 10% per highest source term order

• 2/4/8 substeps increase the total running time by roughly 25/50/100%
Running Times

• Tally nuclides:
 – Number of fissions: <1%
 – Energy released in depletion calculations: +8–10%
 – Energy released in decay calculations: +20–30%
 – Average concentrations of all nuclides
 • Decay calculations: +110–130%
 • Depletion calculations: +80–90%

• Other tallies can be constructed from average concentrations
 – Running time effect is never more than 80-130%.
Results: Burnup calculation

Cumulative normalization error and the error in the change to HM inventory with different coupling schemes when depleting a 2D PWR assembly segment with Gd rods.

The former is obtained by adding a single tally nuclide while determining the latter requires having an accurate reference solution.
Results: Burnup Calculation

Absolute errors in the Gd-155 and U-235 atomic densities with different coupling schemes when depleting a 2D PWR assembly segment with Gd rods.

Normalization is not the only error source so a small normalization error does not guarantee results to be all around accurate.
Summary

• New capabilities for CRAM
 – Source term
 – Improved accuracy
 – Evaluating integral results
 – Source term and tally nuclides are applicable with some other depletion algorithms in addition to CRAM

• This work was carried out with ORIGEN in SCALE
 – ORIGEN now has a CRAM solver
 • LU decompositions by the SuperLU–library
 – Presented features are not yet available in Serpent
Acknowledgements

Funding from SAFIR2014/2018, the Finnish Program on Nuclear Power Plant Safety is acknowledged.

This material is based upon work supported by the U.S. Department of Energy, Office of Nuclear Energy, Advanced Modeling and Simulation Office, under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.