

On Doppler-broadening Rejection Correction (DBRC)

Tuomas Viitanen

Serpent User Group Meeting, Berkeley, USA November 6-8, 2013

Elastic scattering kinetics in MC

- When an elastic scattering occurs, the velocity and direction of the scattered neutron depends on the velocity of the target nucleus.
- When $S(\alpha, \beta)$ tables are available, the secondary particle distributions can be sampled straight from them (bound-atom scattering)
- When the tables are not available, the velocities are actually sampled.
 - At relatively low energies so called free gas treatment is used.
 - Above a threshold energy (400 kT) the target is assumed to be stationary.

Free Gas Treatment

Distribution traditionally used for sampling target velocities (Solbrig)

$$P(V_{\rm t}, \mu) = \frac{v_{\rm r}}{2v} f_{\rm MB}(V_{\rm t}, T) \tag{1}$$

includes an assumption

$$\frac{\sigma_{\rm s}(v_{\rm r},0)}{\sigma_{\rm s}(v,T)} \approx 0 \tag{2}$$

Correct distribution:

$$P(V_{t}, \mu) = \frac{\sigma_{s}(v_{r}, 0)}{\sigma_{s}(v, T)} \frac{v_{r}}{2v} f_{MB}(V_{t}, T)$$
(3)

DBRC

- Doppler-broadening Rejection Correction is a methdod for taking into account the effect of varying cross sections on the target velocity distribution.
- The velocity distribution becomes correct if velocities are sampled from distribution (Rothenstein, Dagan, Becker)

$$P(V_{t}, \mu) = \frac{\sigma_{s}(v_{r}, 0)}{\sigma_{s,maj}(v)} \frac{v_{r}}{2v} f_{MB}(V_{t}, T)$$
(4)

where $\sigma_{s,maj}(v)$ is the maximum zero Kelvin scattering xs within the range of thermal motion around v.

Effects of DBRC

Figure 1: Elastic scattering xs of $^{238}\mathrm{U}$ xs near the lowest resonance.

$$P(V_{t}, \mu) = \frac{\sigma_{s}(v_{r}, 0)}{\sigma_{s,\text{mai}}(v)} \frac{v_{r}}{2v} f_{\text{MB}}(V_{t}, T)$$
(5)

DBRC in Serpent

set dbrc 0.4E-6 2.1E-4 92238.00c

- Minimum and maximum energy for DBRC
- List of 0 K cross sections for DBRC nuclides.

Effect on results: fresh fuel

Table 1: Eigenvalues with and without DBRC for U-238.

System	without DBRC	with DBRC	$\Delta k_{ m eff}$ (pcm)
PWR @ HFP	1.28917 ± 18 pcm	1.28735 ± 18	182
HTGR @ "HFP"	1.20995 \pm 27 pcm	1.20093 ± 27	902

Effect on results: burnup calculation (1/2)

Figure 2:

Effect on results: burnup calculation (2/2)

Figure 3:

What nuclides to include?

• ²³⁸U is the most significant, but...

_

Conclusion

- The standard way of calculating elastic scattering kinetics is wrong
- The error significantly affects the resonance absorption rates, which leads to
 - Too high $k_{
 m eff}$ at BOL
 - Too small $^{239}\mathrm{Pu}$ concentrations at EOL when calculating burnup.
- The error can be corrected using DBRC.
 - ²³⁸U is the most significant.
 - If interested in accurate actinide concentrations, add at least $^{240}\mathrm{Pu}.$