Introduction to Sensitivity and Uncertainty Analysis in Reactor Physics

Maria Pusa

September 16th, 2011
Outline

- Sensitivity analysis
- Uncertainty analysis
- Methods
- Application to reactor physics
- Example calculation
Sensitivity

- **Starting point**: mathematical model containing uncertain parameters and response dependent on this model

- **Question**: If one of the parameters is perturbed, how will this affect the response?

- **Mathematical definition**:
 - Simplest case: local sensitivity of response \(R \) with respect to parameter \(\alpha \) at point \(\alpha = \alpha_0 \) is the derivative
 \[
 s_\alpha = \left(\frac{dR}{d\alpha} \right)_{\alpha=\alpha_0}
 \]
 \(\text{(1)} \)
 - This generalizes easily to more general mathematical systems (e.g. parameters that are functions and responses that are functionals)
Sensitivity Analysis

- **Objective**: Compute derivatives with respect to all parameters of interest

- Brute-force approach:
 - Variate the parameters one-by-one and compute the response
 - Inefficient when there are several parameters

- Deterministic approach:
 - Formulate the problem mathematically and compute the derivatives
 - Very efficient if a mathematical concept called *adjoint* is utilized
Uncertainty

- **Starting point**: a mathematical model containing uncertain parameters and response dependent on this model

- **Question**: How to quantify the uncertainty related to the parameters?
 - Bayesian probability definition: knowledge about a parameter presented as probability distribution
 - Variance (one parameter) or covariance (several parameters) of the distribution may be chosen as the descriptive statistic for the uncertainty
Uncertainty Analysis

- **Objective**: Compute the probability distribution of the response based on the probability distributions of the uncertain parameters.

- Determination of the exact distribution usually extremely difficult.
 - Compute only variance/covariance due to uncertain parameters OR estimate distribution based on simulations.

- Inaccuracy related to numerical methods or approximation errors not included in classical uncertainty analysis.
Uncertainty Analysis Methods

- **Deterministic approach:**
 1. Calculate response sensitivity vector s
 2. Linearize response
 \[
 R \approx s\alpha
 \]
 3. Compute respective variance/covariance
 \[
 \text{Cov}[R] \approx \text{Cov}[s\alpha] = s\text{Cov}[\alpha]s^T.
 \]

- **Statistical approach**
 1. Sample points from distribution $p(\alpha)$
 2. Compute R corresponding to each sample
 3. Compute uncertainty estimates based on simulated $p(R)$
Application to Reactor Physics

- **Mathematical model**: transport (or diffusion) equation, potentially combined with a depletion model

- **Responses**: multiplication factor, reaction rates, homogenized cross-sections etc.

- **Uncertain parameters**: neutron cross-sections, initial nuclide concentrations, system dimensions etc.
Application to Reactor Physics: Adjoint-based Approach

+ Computationally very efficient
+ Yields detailed sensitivity profiles
 − Best-suited for deterministic codes
 − Requires extensive modifications in the code
 − Has not been applied to depletion problems
Application to Reactor Physics: Statistical Approach

+ Well-suited for both deterministic and Monte Carlo codes
+ Code can be treated as a black box (depletion does not cause any difficulties!)
+ Yields additional information about the distribution $p(R)$ (besides variance/covariance)
 – Computationally expensive
 – Does not yield sensitivity information
S&U analysis with Monte Carlo method

- Statistical approach
 - Sample from Gaussian distribution based on covariance data
 - Total Monte Carlo:
 - Suitable for burnup calculations

- Adjoint-based approach
 - exploit the physical interpretation of adjoint:
 - Suitable for problems covered by generalized perturbation theory
Example of S&U Calculation

- Calculation code: CASMO-4
- Source of uncertainty: neutron cross-sections
- S&U analysis method: Adjoint-based
- Test case: a 7×7 BWR assembly [1]

<table>
<thead>
<tr>
<th>Rod type</th>
<th>^{235}U (wt.%)</th>
<th>Gd_2O_3 (wt.%)</th>
<th>No. of rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.93</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>1.94</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>1.69</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5A</td>
<td>2.93</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>6B</td>
<td>2.93</td>
<td>3.0</td>
<td>1</td>
</tr>
</tbody>
</table>

K. Ivanov et al., Benchmark for uncertainty analysis in modeling (UAM) for design, operation, and safety analysis of LWRs, Volume I: Specification and Support Data for the Neutronics Cases (Phase I), Version 2.0 , NEA/NSC/DOC(2011)
Example: flux and adjoint flux
Example: k_{inf} S&U profiles (1)

- $k_{\text{inf}} = 1.1055$
- $\Delta k_{\text{inf}}/k_{\text{inf}} = 0.5076\%$

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Param.pair</th>
<th>Rel. sensitivity</th>
<th>Rel. uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>σ_c, σ_c</td>
<td>-2.448×10^{-1}</td>
<td>3.198×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>ν, ν</td>
<td>9.161×10^{-1}</td>
<td>2.720×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_c, σ_c</td>
<td>-1.010×10^{-1}</td>
<td>1.423×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_f, σ_f</td>
<td>4.157×10^{-1}</td>
<td>1.416×10^{-1}</td>
</tr>
<tr>
<td>^{238}U</td>
<td>σ_s, σ_s</td>
<td>-1.499×10^{-2}</td>
<td>1.320×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_c, σ_f</td>
<td></td>
<td>1.242×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>χ, χ</td>
<td>9.161×10^{-1}</td>
<td>1.030×10^{-1}</td>
</tr>
<tr>
<td>^{238}U</td>
<td>ν, ν</td>
<td>6.107×10^{-2}</td>
<td>7.102×10^{-2}</td>
</tr>
<tr>
<td>^1H</td>
<td>σ_c, σ_c</td>
<td>-1.072×10^{-1}</td>
<td>5.362×10^{-2}</td>
</tr>
<tr>
<td>^1H</td>
<td>σ_s, σ_s</td>
<td>1.263×10^{-1}</td>
<td>5.061×10^{-2}</td>
</tr>
</tbody>
</table>
Example: k_{inf} S&U profiles (2)

- Sensitivity plots

 ![Sensitivity plots](image)

- ^{238}U capture covariance matrix

 ![Covariance matrix](image)
Example: Homogenized two-group cross-section uncertainties

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Relative uncertainty $\frac{\Delta R}{R}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu \Sigma_{f,1}$</td>
<td>4.976×10^{-3}</td>
<td>8.399×10^{-1}</td>
</tr>
<tr>
<td>$\nu \Sigma_{f,2}$</td>
<td>6.922×10^{-2}</td>
<td>4.490×10^{-1}</td>
</tr>
<tr>
<td>$\Sigma_{a,1}$</td>
<td>7.283×10^{-3}</td>
<td>7.526×10^{-1}</td>
</tr>
<tr>
<td>$\Sigma_{a,2}$</td>
<td>5.494×10^{-2}</td>
<td>2.122×10^{-1}</td>
</tr>
<tr>
<td>$\Sigma_{c,1}$</td>
<td>5.348×10^{-3}</td>
<td>1.098×10^{0}</td>
</tr>
<tr>
<td>$\Sigma_{c,2}$</td>
<td>2.653×10^{-2}</td>
<td>5.066×10^{-1}</td>
</tr>
<tr>
<td>$\Sigma_{f,1}$</td>
<td>1.935×10^{-3}</td>
<td>5.563×10^{-1}</td>
</tr>
<tr>
<td>$\Sigma_{f,2}$</td>
<td>2.841×10^{-2}</td>
<td>3.244×10^{-1}</td>
</tr>
</tbody>
</table>
Example: generalized adjoints

Energy (eV)

$\nu \sum_{f,1}$

$\nu \sum_{f,2}$

Energy (eV)
Example: S&U profiles for $\nu \Sigma_{f,2}$

- $\nu \Sigma_{f,2} = 6.922 \times 10^{-2}$, relative uncertainty $4.490 \times 10^{-1}\%$

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Param. pair</th>
<th>Sensitivity</th>
<th>Contribution to $\frac{\Delta R}{R}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{235}U</td>
<td>$\bar{\nu}, \bar{\nu}$</td>
<td>9.996×10^{-1}</td>
<td>3.105×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_f, σ_f</td>
<td>7.985×10^{-1}</td>
<td>2.893×10^{-1}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_f, σ_c</td>
<td>7.985×10^{-1}</td>
<td>1.134×10^{-1}</td>
</tr>
<tr>
<td>^{238}U</td>
<td>σ_c, σ_c</td>
<td>-4.406×10^{-2}</td>
<td>7.257×10^{-2}</td>
</tr>
<tr>
<td>^{235}U</td>
<td>σ_c, σ_c</td>
<td>-3.599×10^{-2}</td>
<td>5.613×10^{-2}</td>
</tr>
</tbody>
</table>
Summary

- Sensitivity analysis
 - Adjoint-based approach
 - Brute force method

- Uncertainty analysis
 - Deterministic (requires sensitivities)
 - Statistical sampling

- S&U analysis with Monte Carlo method
 - Statistical sampling based on covariance data
 - Total Monte Carlo
 - Adjoint-based (exploit physical interpretation of adjoint)