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1. Introduction

One of the main applications of Serpent [1] is the generation of homogenized group and time
constants for reactor simulator codes. In the recent years the application of Serpent to such
tasks has become more routine [2, 3, 4]. The generation of homogenized group and time con-
stants is a process that uses pre-processed (e.g. with NJOY) evaluated nuclear data as an
input for a transport code to produce a multitude of constants describing neutron interaction
in a specific target system. As the evaluated nuclear data used as input in the process is ob-
tained through a combination of experimental and theoretical work it contains uncertainties.
While some of the uncertainties in the evaluated nuclear data are still unknown, the evaluation
of these uncertainties and their listing as evaluated nuclear covariance data is ongoing.

If one can assess the sensitivity of some quantities of interest (such as group constants) to
perturbations in nuclear data, one can propagate the uncertainty from the available nuclear
covariance data evaluations to the quantities of interest. Such sensitivity calculation capabilities
were implemented to Serpent 2.1.29 in 2017 [5] based on previous work by M. Aufiero [6].

An obvious application for this capability is to combine the evaluated nuclear data uncertainties
(covariances) with calculated sensitivities of any generated group constants to perturbations
in nuclear data in order to obtain the nuclear data related uncertainty of the generated group
constants. The name of this process is uncertainty propagation.

This report describes the extension of Serpent to combine the sensitivity calculation capabilities
with evaluated covariance data resulting in estimates of nuclear data uncertainty for various
output quantities, most notably in group and time constants. A large part of such an extension
is related to the ability of Serpent to read in, process and interact with the nuclear covariance
data. The remaining part handles the calculation of the sensitivities of the different group and
time constants to nuclear data perturbation, a process that needs to be tailored in an individual
manner for many of the generated group and time constants.

The approach for this project was as follows:

1. Extend Serpent to read in, process and utilize nuclear covariance data from a relevant
source.

2. Extend Serpent to combine the covariance data with calculated sensitivities to produce
output uncertainties during runtime.

3. Formulate the theoretical and practical approach of calculating sensitivities for the differ-
ent group and time constants.

4. Implement the calculation of the sensitivities and the propagation of uncertainties for
those group and time constants that do not require extensive modifications to the code.

The implementation of the sensitivity calculation for certain group/time constants as well as the
automatic set up of the uncertainty propagation whenever group constants are being generated
with covariance data are left as future work. Implementing the calculation of the remaining
sensitivity coefficients should be straightforward as the required steps are described in this
report.

2. Background

This section describes the background information on sensitivities (Sec. 2.1), deterministic un-
certainty propagation (Sec. 2.2) and the calculation of sensitivities with Serpent (Sec. 2.3) that
a reader might need to understand the later sections.
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2.1 Theoretical background on sensitivities

In this report the term "sensitivity coefficient" (or simply "sensitivity") will be used to refer to the
relative change in a response R due to a relative change in a perturbed quantity P and will be
denoted with

SR
P =

dR
R
dP
P

=
P
R

dR
dP

(1)

In the following, a few helpful relations are derived to be used later in the report.

Sensitivity of an inverse of a response:

S
1
R
P =

dR−1

R−1

dP
P

= RP
dR−1

dP
= RP(−R−2)

dR
dP

= −P
R

dR
dP

= −SR
P (2)

Sensitivity of a product (A and B are two separate responses):

SAB
P =

dAB
AB
dP
P

=
P

AB
d

dP
AB =

P
AB

(
B

dA
dP

+ A
dB
dP

)
=

P
A

dA
dP

+
P
B

dB
dP

= SA
P + SB

P (3)

Sensitivity of a ratio (could also be obtained from the two previous derivations):

SA/B
P =

dA/B
A/B
dP
P

=
BP
A

d
dP

A
B

=
BP
A

(
1
B

dA
dP
− A

B2
dB
dP

)
=

P
A

dA
dP
− P

B
dB
dP

= SA
P − SB

P (4)

In a (perhaps) interesting manner, the sensitivities of sums or differences of responses have
slightly more complex forms depending also on the magnitude of the responses. Sum:

SA+B
P =

d(A+B)
(A+B)

dP
P

=
P

A + B
d

dP
(A + B) =

P
A + B

(
dA
dP

+
dB
dP

)
=

1
A + B

(
A

P
A

dA
dP

+ B
P
B

dB
dP

)
=

A
A + B

SA
P +

B
A + B

SB
P (5)

Similarly, the difference will yield
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SA−B
P =

d(A−B)
(A−B)

dP
P

=
P

A− B
d

dP
(A− B) =

P
A− B

(
dA
dP
− dB

dP

)
=

1
A− B

(
A

P
A

dA
dP
− B

P
B

dB
dP

)
=

A
A− B

SA
P −

B
A− B

SB
P (6)

Finally, it should be noted that the sensitivity of a response R multiplied by a constant α is
simply

SαR
P =

d(αR)
(αR)
dP
P

=
P
αR

d
dP

(αR) =
P
αR

α
d

dP
R =

P
R

dR
dP

= SR
P . (7)

2.2 Deterministic uncertainty propagation
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Figure 1. 56 group relative covariance of the elastic scattering cross section of 158Gd.
(scale.rev08.56groupcov7.1)

The nuclear data covariances are usually processed into a multi-group format as in the relative
covariance of 158Gd elastic scattering cross section shown in Fig. 1. If we know the sensitivity
of a response R to the perturbation of the cross section X in each of the energy groups we can
use the first-order uncertainty propagation formula (Sandwich rule) to collapse the covariance
data with the sensitivities

CovR
X ≈ (S

R
X )T CovX ,X S

R
X , (8)

where S
R
X ∈ RNg×1 is the sensitivity vector containing the group sensitivities, CovX ,X ∈ RNg×Ng

is the covariance matrix containing the group covariances and Ng is the number of energy
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groups. The propagated nuclear data uncertainty for response R can then be obtained as the
square root of the covariance:

UncR
X =

√
CovR

X . (9)

Emin

Emax
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5
G

d
(n

,γ
)

Emin Emax

155Gd (n,γ)
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Figure 2. 56 group relative covariances of the elastic scattering and radiative capture cross
sections of 155Gd. (scale.rev08.56groupcov7.1)

Often, the data for a specific cross section has covariances not simply against itself but against
some other reaction modes of the same nuclide or even some reaction modes of different nu-
clides. Figure 2 shows an example of such covariances between the elastic scattering and
radiative capture cross sections of 155Gd. In such a case, the Sandwich rule can be applied
using the whole block matrix containing all four of the single-reaction covariance data (capture-
capture, capture-elastic, elastic-capture and elastic-elastic) as the covariance matrix and in-
cluding sensitivities of both reaction modes to the sensitivity vector:

CovR
2+102 ≈

[
(S

R
102)T (S

R
2 )T

] [Cov102,102 Cov102,2

Cov2,102 Cov2,2

]S
R
102

S
R
2

 (10)

Here the lower indices refer to the reaction mode MT-number (2 is elastic scattering, 102 is
radiative capture) and the block matrix of covariance matrices refers to the block matrix shown
in Fig. 2. The downside of this approach is the fact that the covariance of the response R
coming from the different reaction covariances (2,2), (102,102) and (2,102) get lumped up to
the same resulting covariance and cannot be examined separately.

For the separation of the different sources of covariance (uncertainty) we can work Eq. 10 into
a form where the different contributions are separated:
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CovR
2+102 ≈

[
(S

R
102)T (S

R
2 )T

] [Cov102,102 Cov102,2

Cov2,102 Cov2,2

]S
R
102

S
R
2


CovR

2+102 ≈
[
(S

R
102)T (S

R
2 )T

] Cov102,102S
R
102 + Cov102,2S

R
2

Cov2,102S
R
102 + Cov2,2S

R
2


CovR

2+102 ≈ (S
R
102)T Cov102,102S

R
102 + (S

R
102)T Cov102,2S

R
2 + (S

R
2 )T Cov2,102S

R
102 + (S

R
2 )T Cov2,2S

R
2

CovR
2+102 ≈ (S

R
102)T Cov102,102S

R
102 +

[
(S

R
102)T (S

R
2 )T

] [ 0 Cov102,2

Cov2,102 0

]S
R
102

S
R
2

 + (S
R
2 )T Cov2,2S

R
2

CovR
2+102 ≈ CovR

102 + CovR
(2,102) + CovR

2

Basically, we can separate the effects of the self-covariances of MT 2 and MT 102 from the
cross-covariance between the two. This requires us to process the block covariance matrix in
Fig. 2 into the three different matrices shown in Fig. 3:
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Figure 3. The covariances from the block matrix shown in Fig. 2 separated into three sepa-
rate matrices, each containing either a self-covariance of a single reaction mode or a cross-
covariance of two different reaction modes.

By separating the different reaction modes from the block matrices, we can separate the differ-
ent sources of variance (and uncertainty) coming from the different reaction modes. While the
covariance data can be read from processed covariance data files, the sensitivity vectors need
to be calculated with Serpent.

2.3 Calculating sensitivities with Serpent

The sensitivity calculation capabilities of Serpent are based on a collision-history approach [6]
with the current implementation being described in a separate conference publication [5].

The methodology can be used to calculate sensitivities of various responses R to various per-
turbations P. The possible responses include

1. The effective multiplication factor (R = keff.).

2. Reaction rate ratios, i.e. responses in the form of R = 〈Σ1,φ〉
〈Σ2,φ〉 .

• With next to no additional work more general responses of the form R = DET1
DET2

, i.e. the
ratio of two quantities tallied with implicit or analog Serpent detectors can be used.
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3. Adjoint-weighted quantities (bilinear ratios) in the form of R = 〈φ
†,Σ1φ〉
〈φ†,Σ2φ〉 . These types of

responses include

(a) The effective delayed neutron fraction (R = βeff.).

(b) Prompt neutron lifetime (R = `eff.).

(c) Coolant density reactivity coefficient (R = αcool.).

For each of these responses, the sensitivity can be calculated with respect to a perturbation in
the cross section of a specific reaction mode of a specific nuclide over a specific energy interval
(group). This allows Serpent to calculate the energy group wise sensitivity vectors for different
reaction modes of different nuclides that are required to apply the Sandwich rule (Eq. 8). One
such calculated group-wise sensitivity (S-vector) is shown in Fig. 4.
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Figure 4. Sensitivity of the keff of a PWR-pin cell geometry to the capture cross section of 235U
calculated with Serpent. Tallied on the SCALE 56 energy group structure.

`eff. and βeff., two important time constants can be directly calculated using the sensitivity ap-
proach for the adjoint-weighted quantities and most of the group constants are of the form

R =
〈Σ1,φ〉g
〈Σ2,φ〉g

=

∫
V
∫ Eg−1

Eg
Σ1(~r , E)φ(~r , E)dEd3r∫

V
∫ Eg−1

Eg
Σ2(~r , E)φ(~r , E)dEd3r

(11)

with Σ2(~r , E) = 1.

The first order estimate for the sensitivity of such a reaction rate ratio [6] includes direct and
indirect terms:

SR
P =

〈
∂Σ1
∂P/P ,φ

〉
g

〈Σ1,φ〉g
−

〈
∂Σ2
∂P/P ,φ

〉
g

〈Σ2,φ〉g
+

〈
Σ1, ∂φ

∂P/P

〉
g

〈Σ1,φ〉g
−

〈
Σ2, ∂φ

∂P/P

〉
g

〈Σ2,φ〉g
, (12)

of which the calculation of the indirect term has been previously implemented into Serpent [5,
6].
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One obvious question after noting that the sensitivities of reaction rate or detector ratios can be
calculated is whether the sensitivity of a single reaction rate or a detector can be calculated,
i.e. whether it is possible to use

R = 〈Σ1,φ〉

or

R = DET1.

In the current application, where Serpent is run in the criticality source mode this is a rather
misleading question: In the criticality source mode, the normalization of the simulation is a free
parameter and the detector tally values are normalized with a scalar multiplier in order to fix
either the fission power, source rate or some other reaction rate to a user specified value X .
This means that1 the output of our detector 1 is actually the tallied detector value multiplied with
a normalization coefficient N

DET1 = N 〈Σ1,φ〉 = NDET0
1,

where the superscript 0 indicates the tallied value and the normalization coefficient N is chosen
so that the detector tally value for another detector tallying the normalization reaction rate (e.g.
fission power) will be X :

DETnorm = N 〈Σnorm,φ〉 = NDET0
norm = X ,

which means that

N =
X

DET0
norm

and

DET1 = X
DET0

1

DET0
norm

.

Simply put, the output values of detectors in criticality source simulations are already reaction
rate ratios. The sensitivities of singular detector output values to perturbations shall thus be
calculated as sensitivities of the detector ratio between the detector of interest and the normal-
ization detector, e.g. a fission power detector covering the whole system.

1Not going into detail on the specific implementation.
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3. Group and time constants considered in this work

We will derive methods for calculating the sensitivities for the following group and time-constants
required by HEXTRAN and TRAB3D and generated by Serpent:

The two-group constants:

• Diffusion coefficient (D).

• Absorption cross section (Σa).

• Fission production cross section (νΣf ).

• Fission cross section (Σf ).

• Energy per fission (κ)

• Inverse velocity of prompt neutrons (1/vp).

• Discontinuity factors.

• Effective fission yield of fission poisons.

• Microscopic absorption cross sections of the fission poisons.

• Σ1→2 Slowing down cross section from fast to thermal group.

Time-constants:

• βi Delayed neutron fractions for each group.

• λi Delayed neutron group wise decay constants.

Reflector constants:

• Albedos: Total or partial.
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4. Theoretical work for calculating the required sensitivity coeffi-
cients

The problem is now to either formulate the required responses in the form of the familiar re-
sponses described in Section 2.3 for which sensitivity constants can already be calculated or
to apply additional theoretical work into finding ways to calculate the sensitivities for new re-
sponses.

It should be noted that all sensitivities calculated in the manner described in the following sec-
tions will be for non-leakage corrected group constants. Propagation of the nuclear data uncer-
tainties through the leakage correction is not considered in this report.

Serpent uses an intermediate multi-group energy group structure to tally relevant parameters
and uses either direct or inverse energy group condensation to obtain the few-group constants.
Eventually we may want to conduct similar condensations for the multi-group sensitivity coeffi-
cients so the derivation for such a process is presented in the following.

4.1 Direct energy group condensation

Going from multi-group (group index h) to few-group (group index g) for estimate Θ via direct
energy group condensation is achieved through:

Θg =
∑

h∈g ΘhΦh∑
h∈g Φh

The sensitivity of the condensed estimate (group g) can be written with the help of the multi-
group estimates as:

SΘg
P =

dΘg
Θg

dP
P

=
1
Θg

P
dΘg

dP
=

∑
h∈g Φh∑

h∈g ΘhΦh
P

d
dP

∑
h∈g ΘhΦh∑

h∈g Φh
(13)

Expanding the derivative yields

SΘg
P =

∑
h∈g Φh∑

h∈g ΘhΦh
P

 d
dP
∑

h∈g ΘhΦh∑
h∈g Φh

−
∑

h∈g ΘhΦh(∑
h∈g Φh

)2
d

dP

∑
h∈g

Φh

 (14)

from where we can multiply the first fraction into the parentheses to obtain

SΘg
P = P

 d
dP
∑

h∈g ΘhΦh∑
h∈g ΘhΦh

− 1∑
h∈g Φh

d
dP

∑
h∈g

Φh

 . (15)

If we take the derivatives inside the summations, we’ll have

SΘg
P = P

∑h∈g

(
dΘh
dP Φh + Θh

dΦh
dP

)
∑

h∈g ΘhΦh
− 1∑

h∈g Φh

∑
h∈g

dΦh

dP

 . (16)

Based on the definition of a sensitivity coefficient we have
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dΘh

dP
=
Θh

P
SΘh

P

dΦh

dP
=
Φh

P
SΦh

P ,

which leads to

SΘg
P = P

∑h∈g

(
Θh
P SΘh

P Φh + Θh
Φh
P SΦh

P

)
∑

h∈g ΘhΦh
− 1∑

h∈g Φh

∑
h∈g

Φh

P
SΦh

P

 (17)

and finally

SΘg
P =

∑
h∈g

(
ΘhSΘh

P Φh + ΘhΦhSΦh
P

)
∑

h∈g ΘhΦh
− 1∑

h∈g Φh

∑
h∈g

ΦhSΦh
P (18)

or

SΘg
P =

∑
h∈g ΘhΦh

(
SΘh

P + SΦh
P

)
∑

h∈g ΘhΦh
−
∑

h∈g ΦhSΦh
P∑

h∈g Φh
. (19)

If Θ is a homogenized multi-group cross section, the first term is simply averaging the reaction
rate using the sum of the cross section and flux sensitivities as a weighting factor. The second
term is simply the average flux when the flux sensitivity is used as a weighting factor.

4.2 Inverse energy group condensation

Going from multi-group (group index h) to few-group (group index g) for estimate Θ via inverse
energy group condensation is achieved through:

1
Θg

=

∑
h∈g

1
Θh

Φh∑
h∈g Φh

⇔ Θg =
∑

h∈g Φh∑
h∈g

1
Θh

Φh

In order to somewhat follow the derivation of the direct energy group condensation we’ll first
derive

S
1
Θg
P

and use Eq. 2 to obtain

SΘg
P .

We’ll start with:

S
1
Θg
P =

dΘ−1
g

Θ−1
g

dP
P

= ΘgP
dΘ−1

g

dP
=

∑
h∈g Φh∑

h∈g
1
Θh

Φh
P

d
dP

∑
h∈g

1
Θh

Φh∑
h∈g Φh

(20)
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Expanding the derivative yields

S
1
Θg
P =

∑
h∈g Φh∑

h∈g
1
Θh

Φh
P

 d
dP
∑

h∈g
1
Θh

Φh∑
h∈g Φh

−
∑

h∈g
1
Θh

Φh(∑
h∈g Φh

)2
d

dP

∑
h∈g

Φh

 (21)

from where we can multiply the first fraction into the parentheses to obtain

S
1
Θg
P = P

 d
dP
∑

h∈g
1
Θh

Φh∑
h∈g

1
Θh

Φh
− 1∑

h∈g Φh

d
dP

∑
h∈g

Φh

 . (22)

If we take the derivatives inside the summations, we’ll have

S
1
Θg
P = P


∑

h∈g

(
d 1
Θh

dP Φh + 1
Θh

dΦh
dP

)
∑

h∈g
1
Θh

Φh
− 1∑

h∈g Φh

∑
h∈g

dΦh

dP

 , (23)

which is equal to

S
1
Θg
P = P


∑

h∈g

(
− 1

Θ2
h

dΘh
dP Φh + 1

Θh

dΦh
dP

)
∑

h∈g
1
Θh

Φh
− 1∑

h∈g Φh

∑
h∈g

dΦh

dP

 , (24)

Based on the definition of a sensitivity coefficient we again have

dΘh

dP
=
Θh

P
SΘh

P

dΦh

dP
=
Φh

P
SΦh

P ,

which leads to

S
1
Θg
P = P


∑

h∈g

(
− 1

Θ2
h

Θh
P SΘh

P Φh + 1
Θh

Φh
P SΦh

P

)
∑

h∈g
1
Θh

Φh
− 1∑

h∈g Φh

∑
h∈g

Φh

P
SΦh

P

 (25)

and finally

S
1
Θg
P =

∑
h∈g

(
− 1

Θh
SΘh

P Φh + 1
Θh

ΦhSΦh
P

)
∑

h∈g
1
Θh

Φh
− 1∑

h∈g Φh

∑
h∈g

ΦhSΦh
P (26)

or

S
1
Θg
P =

∑
h∈g

1
Θh

Φh

(
SΦh

P − SΘh
P

)
∑

h∈g
1
Θh

Φh
−
∑

h∈g ΦhSΦh
P∑

h∈g Φh
. (27)
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To obtain the sensitivity of Θg we’ll simply multiply the previous expression by −1 (Eq. 2):

SΘg
P = −

∑
h∈g

1
Θh

Φh

(
SΦh

P − SΘh
P

)
∑

h∈g
1
Θh

Φh
+
∑

h∈g ΦhSΦh
P∑

h∈g Φh
. (28)

This is rather similar to the direct condensation (Eq. 19), but with some distinct differences.

4.3 Simple homogenized reaction cross sections

The sensitivity coefficients for the absorption and fission cross sections as well as the in-
verse velocities can be calculated directly as reaction rate ratios where the response is

R =
〈x ,φ〉g
〈1,φ〉g

where x is one of the following: Σa, Σf or 1/v . The calculation of these sensitivities can be
achieved through setting up detectors for the reaction rate (the numerator) and the flux (the
denominator).

Absorption cross section cannot currently be directly used as a detector response in Serpent,
which means that the sensitivity for the absorption cross section needs to be calculated from
the sensitivities of capture and fission cross sections and flux according to Eq. 5. Another
possibility is to implement a separate detector response for the absorption cross section.

Serpent already has a detector response for 1/v but if the inverse velocity detector needs to
only score prompt neutrons, some additional work is needed. This could be achieved by imple-
menting a separate detector option to choose whether all or only prompt or delayed neutrons
are scored.

The sensitivity of the slowing down cross section needs to be evaluated as a detector ratio

R =
〈Σ1→2,φ〉
〈1,φ〉

.

There is no implicit way to score the slowing down reaction rate in the numerator, which means
that an analog estimator needs to be used for it. The slowing down reaction rate is not currently
available as a detector response.

4.4 Other homogenized macroscopic cross sections

The sensitivity of the fission production cross section is slightly more complicated to calcu-
late as both the nubar and the fission cross section may be uncertain (have covariance data).
As the homogenized fission production cross section is simply

R =
〈νΣf ,φ〉
〈1,φ〉

we know (Eq. 12) that its sensitivity contains both direct and indirect terms:

SνΣf
P =

〈
∂(νΣf )
∂P/P ,φ

〉
〈νΣf ,φ〉

−

〈
∂1

∂P/P ,φ
〉

〈1,φ〉
+

〈
νΣf ,

∂φ
∂P/P

〉
〈νΣf ,φ〉

−

〈
1, ∂φ

∂P/P

〉
〈1,φ〉

. (29)
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The second direct term will be zero due to the derivative term in the numerator being zero:

SνΣf
P =

〈
∂(νΣf )
∂P/P ,φ

〉
〈νΣf ,φ〉

+

〈
νΣf ,

∂φ
∂P/P

〉
〈νΣf ,φ〉

−

〈
1, ∂φ

∂P/P

〉
〈1,φ〉

. (30)

The calculation of the sum of the indirect terms has been previously implemented into Serpent.
However, in the case of the direct term the evaluation of the derivative ∂(νΣf )

∂P necessitates
working it into

∂(νΣf )
∂P/P

= P
(
∂ν

∂P
Σf + ν

∂Σf

∂P

)
(31)

In practice, the perturbation P is either ν, Σf or something else (such as Σs,ela). If the perturba-
tion is the nubar, i.e. we are calculating the sensitivity of the fission production cross section to
perturbations in ν the derivative will yield

∂(νΣf )
∂P/P

= ν
(
∂ν

∂ν
Σf + ν

∂Σf

∂ν

)
= νΣf (32)

meaning that the sensitivity coefficient is

SνΣf
ν =

〈νΣf ,φ〉
〈νΣf ,φ〉

+

〈
νΣf ,

∂φ
∂P/P

〉
〈νΣf ,φ〉

−

〈
1, ∂φ

∂P/P

〉
〈1,φ〉

. (33)

If, on the other hand P = Σf we have

∂(νΣf )
∂P/P

= Σf

(
∂ν

∂Σf
Σf + ν

∂Σf

∂Σf

)
= νΣf (34)

yielding the same sensitivity coefficient

SνΣf
Σf

=
〈νΣf ,φ〉
〈νΣf ,φ〉

+

〈
νΣf ,

∂φ
∂P/P

〉
〈νΣf ,φ〉

−

〈
1, ∂φ

∂P/P

〉
〈1,φ〉

. (35)

For these two perturbations the direct term is simply 1 whereas if the perturbation is something
not related to ν or Σf the derivative in the numerator of the direct term will be zero yielding zero
for the first term. As fission neutron production is available as a detector response function in
Serpent, the only additional work required is the implementation of the calculation of the direct
term of the reaction rate sensitivity.

The fission poison production cross section sensitivities can be calculated in a manner
similar to the fission neutron production sensitivity with

R =
〈γΣf ,φ〉
〈1,φ〉

where γΣf is the fission yield of the fission poison summed up from the fissile actinides as
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γΣf =
∑

y
γyΣf ,y

with Σf ,y being the macroscopic fission cross section of a specific actinide and γy being the
fission yield for the fission poison (including immediate precursors) from a fission of actinide
y . Currently, the macroscopic fission yield of a fission poison is not available as a detec-
tor response function in Serpent meaning that the calculation of the sensitivity is possible
only after the response function is implemented or if the sensitivity is calculated manually2

in scorepoison.c.

The sensitivity for energy per fission can also be calculated in a similar manner with

R =
〈κΣf ,φ〉
〈Σf ,φ〉

where κ is the fission energy productions. This is a simple reaction rate ratio where both the
reaction rates can already be tallied with Serpent (dr -8 for fission energy deposition and dr -6
for fission rate).

4.5 Homogenized microscopic cross sections

Homogenized microscopic absorption cross sections for nuclide x are calculated by Ser-
pent as

σa,g,x =
V
Vf

∫
Vf

∫ Eg−1
Eg

σa,x (E)φ(~r , E)dEd3r∫
V
∫ Eg−1

Eg
φ(~r , E)dEd3r

(36)

where Vf refers to the volume of the fuel region. In this case the response is

R =
V
Vf

〈σa,x ,φ〉
〈1,φ〉

and based on Eq. 7, the constant multiplier of V/Vf need not be considered when evaluating
the sensitivity. It suffices to calculate the sensitivity of

R =
〈σa,x ,φ〉
〈1,φ〉

which is a simple reaction rate ratio. Both the microscopic reaction rate in the numerator and
the flux in the denominator can be calculated with normal Serpent detectors. The integration
area of the microscopic reaction rate needs to be limited to fuel materials. The calculation of
any homogenized microscopic cross sections can thus be achieved without additional imple-
mentations.

2i.e. not as a detector ratio
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4.6 Diffusion coefficient

The generation of feasible diffusion coefficients with Monte Carlo codes is generally consid-
ered to be a complex problem and various different approaches for calculating the diffusion
coefficient exist.

For example, one of the approaches used by Serpent based on the out-scatter approximation
[7] calculates the diffusion coefficient as

Dg =

∑
h∈g

1
3Σtr,h

Φh∑
h∈g Φh

(37)

where Σtr,h and Φh are the (intermediate) multi-group estimates for the out-scatter transport
cross section and group flux in group h respectively. To write this in a bit simpler format, we’ll
say that

Dg =
1
3

1
Σtr,g

, (38)

where

1
Σtr,g

=

∑
h∈g

1
Σtr,h

Φh∑
h∈g Φh

. (39)

In order to calculate the sensitivity coefficient for Dg we can write

SDg
p = S

1
3

1
Σtr,g

P

since a constant multiplier does not affect the sensitivity (Eq. 7) this is

SDg
p = S

1
Σtr,g
P = −SΣtr,g

P .

We can use the formula for the inverse condensation of the sensitivity coefficient (Eq. 28) to
obtain SΣtr,g

P from SΣtr,h
P and Sφh

P , i.e. from the multi-group sensitivities of the transport cross
section and the flux. The out-scatter transport cross section is calculated as

Σtr,h = Σtot,h − Σs1,h (40)

where Σs1,h is an analog estimate for

Σs1,h =

∫
V
∫ Eh−1

Eh

∫ Emax
Emin

µ(E → E ′)Σs(~r , E → E ′)φ(~r , E)dE ′dEd3r∫
V
∫ Eh−1

Eh
φ(~r , E)dEd3r

, (41)

i.e. group h’s flux-weighted spatial and energy averaging of the scattering cross section times
the scattering cosine.
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As the transport cross section is defined (Eq. 40) as a difference between the total cross sec-
tion and the P1-scattering cross section its sensitivity can be calculated from the values and
sensitivities of the two component cross sections (based on Eq. 6):

SΣtr
P =

Σtot

Σtot − Σs1
SΣtot

P − Σs1

Σtot − Σs1
SΣs1

P . (42)

Calculating the sensitivity coefficient for the out-scatter diffusion coefficient requires the cal-
culation of the sensitivity for both the total cross section, which is straightforward, and the
P1-scattering cross section, which is slightly more complicated.

The response is

R =
〈µΣs,φ〉
〈1,φ〉

,

which can be calculated as a reaction rate ratio similar to the homogenized fission neutron,
poison or energy production cross section (see Section 4.4) with care put into evaluating the
direct term of the sensitivity. As the energy dependent mean scattering cosine is generally not
available, the detector in the numerator needs to be scored in an analog manner.

The sensitivity of this diffusion coefficient can thus be calculated if estimates are found for the
sensitivities of the multi-group flux, total cross section and P1 scattering cross section. The P1
scattering cross section is currently not available as a detector response function.

Serpent does offer several alternate methods for calculating the diffusion coefficient some of
which may be more straightforward to include in the sensitivity calculation. The transport cor-
rected diffusion coefficient (TRC_DIFFCOEF) also calculates the diffusion coefficient as

Dg =
1
3

1
Σtr,g

,

but instead of using the P1 scattering cross section in calculating the transport correction to the
total cross section it uses a user given energy dependent transport correction

f (E) =
Σtr(E)
Σtot(E)

to calculate the transport cross section directly from the total cross section. As the P1 scattering
cross section does not need to be tallied the sensitivity for the transport corrected diffusion
coefficient can be calculated without additional implementations.

4.7 Discontinuity factors

If the homogenized region covers the whole of the simulated geometry and the homogenization
is performed using reflective boundary conditions the discontinuity factors for surface Sk can
be calculated from (see Eq. 28 of [7]):

Fg,k =
1

Sk

∫
Sk

∫ Eg−1
Eg

φ(~r , E)dEd2r
1
V
∫

V
∫ Eg−1

Eg
φ(~r , E)dEd3r

(43)

The numerator can be evaluated using a surface flux detector while the denominator is eval-
uated through the use of a volumetric flux detector. Discontinuity factors can thus be seen
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as simple detector ratios and their sensitivities can be calculated using the formula for detec-
tor ratio sensitivities. It should be noted, however that the scoring of surface based detectors in
Serpent is done separately from (volumetric) collision detectors, which requires further changes
in order to extend the sensitivity capabilities to cover surface detectors. The constant multiplier
V/Sk can be ignored as per Eq. 7 when calculating the sensitivity.

If, the homogenized region is simply a subset of the simulated geometry (e.g. colorset/reflector
homogenization) the discontinuity factors need to be solved from a diffusion equation formu-
lated for the homogenized region using the boundary (and corner) net currents tallied in the
heterogeneous calculation as a boundary condition. It is most likely possible to obtain estimates
for the sensitivities (or uncertainties) of the different terms appearing in the homogeneous diffu-
sion equation without much additional work but propagating the sensitivities (or uncertainties)
to the solution of the homogeneous diffusion equation is not straightforward and needs to be
considered in the future.

4.8 Albedos

The total albedo matrix produced by Serpent is calculated by tallying the ratio of two surface
current detectors

αgg′,k =

∫ Eg′−1
E ′g

∫
Sk
~J−g (~r , E) · d~SdE∫ Eg−1

Eg

∫
Sk
~J+(~r , E) · d~SdE

, (44)

where ~J+ is the escaping current and ~J−g (~r , E) is the returning current formed by neutrons
that left the active core in group g. A sensitivity can be calculated for the ratio of two surface
detectors in a straightforward manner. Partial neutron currents are already available as detector
response functions in Serpent.

The partial albedos are calculated for a non-multiplying volume as

αgg′,kk ′ =

∫ Eg′−1
E ′g

∫
Sk′
~J−g,k (~r , E) · d~SdE∫ Eg−1

Eg

∫
Sk
~J+(~r , E) · d~SdE

, (45)

where ~J−g,k is the outward current component formed by neutrons that have entered the non-
multiplying volume in energy group g through face k and exit the volume in energy group g′

through face k ′. Again, the estimate is calculated as a ratio of two detectors and the sensitivity
can be calculated in a standard manner.

4.9 Group-wise delayed neutron fractions

The calculation of the total effective delayed neutron fraction βeff is one of the existing capabil-
ities of Serpent. Calculating sensitivities for the group-wise data βeff,i requires small additional
implementations where the sensitivity for each group is calculated separately. Serpent actu-
ally outputs the βeff,i calculated using multiple methods. The sensitivities are calculated for the
IFP-based method (ADJ_IFP_ANA_BETA_EFF).
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4.10 Delayed neutron group wise decay constants

The calculation of the sensitivities for the delayed neutron decay constants is not one of the
existing capabilities, but for the IFP-based decay constants (ADJ_IFP_ANA_LAMBDA) the calcu-
lation of the sensitivity can be achieved in a manner rather similar to the group-wise delayed
neutron fraction. The extension of the capability to the group-wise decay constants should be
simple.

It should be noted that in the JEFF-libraries the delayed neutron group structure is the same
for every fissionable nuclide, which means that the group wise decay constants are the same
for the homogenized system and insensitive to perturbations in nuclear data3. In ENDF/B and
JENDL-libraries, however each fissionable nuclide has their own six group delayed neutron
group structure. The six homogenized decay constants are thus different from the nuclide-wise
decay constants and thus may be sensitive to perturbations in the nuclear data.

3other than the decay constants themselves
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5. Extending Serpent for uncertainty propagation

This section describes the practical new implementations that were achieved during this work.

5.1 Reading in covariance data

In order to provide statistical uncertainty information on the calculated nuclear data uncertain-
ties the Sandwich rule (Eq. 8) needs to be applied for each neutron batch separately using
the sensitivity coefficients calculated for that batch. This requires Serpent to read in covariance
data for the nuclear data for which the uncertainties are to be produced.

Two widely used multigroup covariance data formats for nuclear data are the COVERX format
used by SCALE [8] and the Boxer format used produced by the COVR module of NJOY [9]. As
the covariance data distributed with the SCALE code system has been widely used in bench-
marking calculations in the UAM-benchmark, reading routines were first implemented for the
COVERX data format to allow for code-to-code comparisons with previously published results.
Support for the output format of COVR can be added in the future.

Readers were implemented for both the binary format of COVERX used by the 56 and 252
group covariance data libraries distributed with SCALE-6.2 and for the ASCII format of COV-
ERX used by the 44 group covariance data libraries distributed with SCALE-6.0.

The reader routines were verified by comparing the covariance data read by Serpent to covari-
ance data read from the binary COVERX files using the C++ utilities distributed with SCALE-
6.2.1 (CoverXReader.cpp).

5.2 Processing the covariance data into a suitable format

After the covariance data is read to Serpent the data is collected either as connected nuclide/re-
action mode blocks such as that shown in Fig. 2 for the covariances of the reaction modes of
155Gd or as separate single reaction mode blocks such as those shown in Fig. 3 for the same
covariances of 155Gd. The sandwich rule will be applied to each of these blocks separately and
the covariance from each block can be evaluated separately.

During this process, the covariance matrices are made symmetrical by averaging the upper
and lower triangular parts of each matrix. The covariance matrices should be symmetric and
positive-semidefinite by definition, but the output of processing codes is not always such.

In the future, the covariance data could be pre-processed using the practices described in [10]
in order to ensure the consistency and positive-semidefiniteness of the covariance matrices.
However, this requires some additional linear algebra such as eigendecompositions for which
methods are currently not found in Serpent.

5.3 Calculating the sensitivities of sum reaction modes

In some cases, the nuclear covariance data is available for a sum reaction mode, e.g. MT 4
(inelastic scattering) while the cross section data used for neutron transport does not contain
this sum reaction mode and instead includes the partial reaction modes (e.g. MT 51-91). For
such cases, the sensitivities are calculated separately for the partial reaction modes and the
sensitivity is summed up internally, whenever some subroutine requests the sensitivity of the
sum reaction mode. This applies to inelastic scattering (MT 4 summed up from MT 51-91),
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fission (MT 18 summed up from MT 19-21), nubar (MT 452 summed up from MT 455 and 456)
and fission spectrum (total fission spectrum summed up from prompt and delayed).

A similar kind of an internal summation is also conducted when subroutines request sensitivities
summed up over all energies, materials, nuclides or reaction modes.

5.4 Calculating the direct term of detector sensitivities

The direct term of detector sensitivities

〈
∂Σi
∂P/P ,φ

〉
〈Σi ,φ〉

(46)

describes the relative change in the sensitivity response (detector value) due to a relative
change in the detector response function due to the applied perturbation P. Generally, the
calculation of this term depends on whether the perturbation P is:

1. The detector response function Σi .

2. A partial reaction mode of Σi .

3. Unrelated to Σi .

In the first case the direct term is simply

〈
∂Σi

∂Σi/Σi
,φ
〉

〈Σi ,φ〉
=

〈
Σi

∂Σi
∂Σi

,φ
〉

〈Σi ,φ〉
=
〈Σi ,φ〉
〈Σi ,φ〉

= 1. (47)

In the second case we have P = Σj and

Σi = Σj +
∑

k

Σk (48)

where Σk are the cross sections of the other partial reaction modes that are included in Σi . This
gives us the following direct term

〈
∂Σi

∂Σj/Σj
,φ
〉

〈Σi ,φ〉
=

〈
Σj

∂
∂Σj

(
Σj +

∑
k Σk

)
,φ
〉

〈Σi ,φ〉
=
〈
Σj ,φ

〉
〈Σi ,φ〉

, (49)

which is simply the relative contribution of the j partial reaction mode to the detector value for
the sum reaction mode i .

In the third case, the detector response does not depend on the perturbed quantity resulting in
the derivative in Eq. 46 being zero and yielding zero as the direct term.

In an ideal situation our perturbations would fall only into categories 1 and 3 and have our di-
rect term be always one or zero. However, the homogenized reaction cross sections used by
reduced order solvers are typically for sum reaction mode (e.g. Σabs or Σfiss) while the covari-
ance data is given for partial reaction modes (radiative capture, first chance fission, second
chance fission etc.).

In order to calculate the direct term in Eq. 49 during the simulation both
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〈
Σj ,φ

〉
and

〈Σi ,φ〉

need to be evaluated. The latter term is simply the detector value and will be calculated au-
tomatically. The former term is the reaction rate of reaction j in the integration domain of the
detector and such terms will tallied through the following means:

In order to keep the integration domain of the partial reaction rate (
〈
Σj ,φ

〉
) equal to that of the

detector reaction rate (〈Σi ,φ〉) the partial reaction rate will be scored if and only if the detector
reaction rate is scored. If a detector reaction rate is scored for a detector included in a sensitivity
calculation, Serpent will first check whether the reaction rate being tallied is one of the following

• Total reaction rate.

• Total capture rate.

• Total fission rate.

• Total elastic scattering rate.

• Total fission neutron production rate.

In such cases, Serpent will score the partial reaction rate separately for all of the reactions
that are both listed as partial reactions of the detector response and being perturbed in the
sensitivity calculation. This will score all of the relevant partial reaction rates for the detector.

The direct sensitivities are thus calculated during the Serpent run and added to the indirect
sensitivities to yield the total sensitivities to be both used for the uncertainty propagation and
output as the detector sensitivities. As indicated by the preceding list, the direct sensitivities are
currently calculated for Σtot, Σc , Σf , Σs,ela and νΣf .

5.5 Adding support for surface detectors

In the previous implementation, the detector ratio sensitivity responses could only include de-
tectors scored in coldet.c. The calculation of sensitivities for the discontinuity factors and
albedos required adding support for surface detectors scored in superdet.c.

After this extension, the user can also use surface detectors (defined with detector option ds)
in detector ratio responses.

5.6 Adding support for multi-bin detectors

Previously, the detector ratio sensitivities have been calculated only for detectors with a single
bin. For example, the calculation of sensitivities for thermal and fast fission cross section has
required separate detectors for thermal fission rate, fast fission rate, thermal flux and fast flux.
This will soon become problematic if sensitivities are to be calculated for multi-group cross
sections instead of few-group cross sections.

Serpent supports the linking of an energy grid to a detector definition, which allows the user
to calculate the detector response in each group using a single detector definition. In order to
easily calculate multi-group sensitivities it would be beneficial to simply allow the user to define
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the response as a ratio of two such multi-bin detectors. Actually, the interesting responses in
this case are the bin-wise ratios between the two detectors (bin 1 of detector 1 divided by bin 1
of detector 2 etc.).

Serpent was thus extended to accept detector ratio responses of two detectors with multiple
bins. The number of bins in the two detectors must be equal and each detector may have at
most one response defined with the "dr"-option.

After the extension, Serpent will "split" the initially defined detector ratio response into new
responses covering the bin-wise ratios of the two detectors.

The implementation was verified by comparing the two-group sensitivities calculated using the
old implementation and single bin detectors to ones obtained with the new implementation and
two energy bin detectors.

The implementation is not limited to energy-bins but covers also spatial bins.

5.7 Adding support for group-wise delayed neutron fraction sensitivities

The previous implementation of the sensitivity routines only calculated the sensitivity of total
βeff. As group-wise delayed neutron fractions are needed for HEXTRAN/TRAB3D the method-
ology was extended to also calculate the sensitivities for the group-wise delayed neutron frac-
tions.

The sensitivities and uncertainties for the group-wise delayed neutron fractions can now be set
to be calculated separately from the total fraction with "sens resp beff <total> <groupwise>"
where <total> and <groupwise> are flags (0/1/no/yes) indicating whether the calculation should
be turned off or on.

5.8 Adding support for group-wise decay constant sensitivities

The previous implementation of the sensitivity routines did not calculate the sensitivity for the
delayed neutron precursor group decay constants. This was added as an option switched on
with "sens resp lambda <total> <groupwise>" where <total> and <groupwise> are flags
(0/1/no/yes) indicating whether the calculation should be turned off or on. The methodology
relies on calculating the sensitivity for λ as a bilinear ratio of adjoint-weighted quantities (see
Section 5 of [6]) and the sensitivity is calculated as

Sλeff
x =

E
[

(−γ)λ ·
∑history (ACCx − REJx )

]
E
[
(−γ)λ

] − E

history∑
(ACCx − REJx )

 , (50)

where the λ is the delayed neutron group decay constant and the other notation follows that of
Eq. 37 of [6] where the sensitivity for prompt neutron lifetime was derived.

5.9 Applying the sandwich rule

The sandwich rule is applied for each separate covariance block after each neutron batch
according to Eq. 8. The correct sensitivity vectors S

R
X are first collected from the sensitivity re-

sults based on the reaction mode(s) included in the covariance block. The vector-matrix-vector
multiplication is then conducted and the square root of the resulting covariance is stored as
the uncertainty coming from that specific covariance block. The covariances from the different
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blocks are summed up to produce the total covariance in the response and the square root is
stored as the total nuclear data uncertainty of the response. The process is repeated for each
response R.
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6. Results and comparisons

In this section, some example results are presented and some assembly level results are com-
pared to similar results obtained previously using CASMO-4E. These comparisons cannot be
considered to yet constitute a thorough validation of the capabilities as the output uncertainties
necessarily depend both on the used transport solver and the utilized covariance data. The
best reference solution that could be used for validating the capabilities would be a sampling
based method, where the cross section data is actually perturbed based on the multi-group
covariance data to produce hundreds or thousands of cross section data libraries. These data
libraries can then be used for Serpent calculations and the nuclear data uncertainties of various
output quantities can be inferred from the statistical spread of the output quantities in this group
of calculations.

For the calculations shown here, the output group constants were calculated as detector ratios
using directly the two-group energy structure. The utilization of the direct and inverse energy
group condensations of the sensitivities (Eq. 19 and Eq. 28) needs to be implemented at a
future time.

These calculations focus on group constants instead of time-constants. The βeff sensitivities
calculated by Serpent have previously been verified in code-to-code comparisons in [12].

The calculations used the 56 group covariance library distributed with SCALE-6.2. The covari-
ance library was linked to the Serpent calculation with the new input option

set coverxlib "/ home/ vvvillehe / XSdata /scale.rev08 .56 groupcov7 .1"

6.1 Pin-cells

The pin-cell test cases included the Peach Bottom 2 and Three Mile Island 1 pin-cells from the
UAM-benchmark phase I specifications [13].

Figure 5. Peach Bottom 2 and Three Mile Island 1 pin-cell geometries to scale with each other.

The two pin-cell geometries are shown in Fig. 5. The fuel in the BWR pin-cell had a lower
enrichment than the one in the PWR pin-cell (2.93 wt.% vs. 4.85 wt.%). While the HZP thermal
hydraulic conditions were similar between the two pin-cells the BWR HFP case had a 40 % void
fraction compared to the 0 % void fraction of the HFP PWR pin-cell.

Both HZP and HFP conditions were calculated for both pin-cells.
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6.1.1 Considered responses

The responses for which the nuclear data uncertainty was calculated are based on the UAM-
problem definition:

• Effective multiplication factor (keff)

• Microscopic one-group fission cross sections for 235U and 238U.

• Microscopic one-group absorption cross sections for 235U and 238U.

• Macroscopic one-group fission cross section.

• Macroscopic one-group absorption cross section.

As the new implementation propagates the nuclear data uncertainties automatically for each
response for which sensitivities are calculated it was enough to simply set up a sensitivity
calculation for each of the responses. This was achieved with the following inputs:

Effective multiplication factor:

The calculation of the effective multiplication factor can be switched on using

sens resp keff

Microscopic one-group cross sections

The UAM-benchmark specifications do not specify how the microscopic one-group cross sec-
tions should be calculated (e.g. integration volumes). Here we conduct the homogenization
according to Eq. 36, i.e. by using the fuel volume as the homogenization volume for the micro-
scopic reaction rate and the whole geometry volume to calculate the homogeneous flux:

We’ll first specify the materials representing 235U and 238U:

mat U5 1.0
92235.09 c 1.0

mat U8 1.0
92238.09 c 1.0

Then we’ll set up detectors for the one-group microscopic fission and capture rates in the fuel
region as well as the total one-group flux in the whole geometry:

det C5 dr -2 U5 dm fuel
det F5 dr -6 U5 dm fuel
det C8 dr -2 U8 dm fuel
det F8 dr -6 U8 dm fuel
det FLX

Finally, we’ll specify the ratios of the reaction rates and flux as sensitivity responses in order to
obtain the sensitivities and the uncertainties for the cross sections:

sens resp detratio 5FISXS F5 FLX
sens resp detratio 8FISXS F8 FLX
sens resp detratio 5CPTXS C5 FLX
sens resp detratio 8CPTXS C8 FLX
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We will calculate the sensitivity/uncertainty of the microscopic absorption cross section based
on the microscopic capture and fission cross sections using Eq. 5.

Macroscopic one-group cross sections

We will simply set up detectors for the one-group macroscopic fission and capture rates as well
as the total one-group flux (in fact the total one-group flux detector is the one we defined for the
homogenized microscopic cross sections):

det FIS dr -6 void
det CPT dr -2 void
det FLX

Then, we’ll specify the ratios of the macroscopic reaction rates and flux as sensitivity responses
in order to obtain the sensitivities and the uncertainties for the cross sections:

sens resp detratio FISXS FIS FLX
sens resp detratio CPTXS CPT FLX

6.1.2 Results

The homogenized microscopic cross sections calculated as a ratio of the microscopic reaction
rate in the fuel region and volumetric flux detector values needed to be scaled by the V/Vf term
in Eq. 36, i.e. the ratio between unit-cell volume and fuel volume.

The hot full power results are shown in the following Tables (1 and 2), whereas the HZP-results
are tabulated in Appendix A. As the values of the group coefficients were calculated from the re-
action rates and fluxes in a post-processing step, no information of their statistical uncertainty is
available. This is also true for the nuclear data uncertainty of the macroscopic absorption cross
section which was calculated from the nuclear data uncertainties of the fission and capture
cross sections.

The largest nuclear data uncertainties are found in the homogenized microscopic fission cross
section for 238U being 4.9 % for the TMI1 pin-cell and 5.7 % for the PB2 pin-cell. The main
contributors to this uncertainty are the uncertainties in the fission spectrum of 235U and in the
inelastic scattering cross section of 238U as seen from Fig. 6.

As a second example the top contributors to the uncertainty of the homogenized one-group
fission cross section are shown in Fig. 7. The top contributors include the inelastic scattering
cross section of 238U, fission spectrum of 235U, the capture cross sections of both uranium
isotopes and the elastic scattering cross section of hydrogen.

It may be interesting to note that in the higher fuel enrichment system (TMI1, 4.85 wt.%) the
uncertainties related to 235U are pronounced compared to the lower enrichment case (PB2,
2.93 wt.%).
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Table 1. TMI1 pin-cell HFP

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.38802 0.56300 ± 0.00152
σc,5 0.88533 1.79426 ± 0.00269
σc,8 0.09181 1.51706 ± 0.00440
σa,5 4.61351 1.38244 ± 0.00000
σa,8 0.10314 1.89250 ± 0.00000
σf,5 3.72818 1.28465 ± 0.00385
σf,8 0.01133 4.93548 ± 0.00543
Σc 0.01036 1.31425 ± 0.00302
Σa 0.02374 1.11684 ± 0.00000
Σf 0.01338 0.96396 ± 0.00357

Table 2. PB2 pin-cell HFP

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.19005 0.72098 ± 0.00274
σc,5 0.82838 1.90970 ± 0.00382
σc,8 0.08167 1.56113 ± 0.00468
σa,5 4.24926 1.50763 ± 0.00000
σa,8 0.09128 1.99689 ± 0.00000
σf,5 3.42088 1.41027 ± 0.00592
σf,8 0.00961 5.69997 ± 0.00684
Σc 0.00849 1.38571 ± 0.00388
Σa 0.01636 1.13802 ± 0.00000
Σf 0.00787 0.87089 ± 0.00514
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Figure 6. HFP pin-cells: Top contributors (as a fraction of the total covariance) to the uncer-
tainty of homogenized microscopic fission cross section of 238U in the TMI1 pin-cell (left) and
in the PB2 pin-cell (right).



RESEARCH REPORT VTT-R-04681-18
30 (42)

238U (n,n’),
238U (n,n’)

235U χ,
235U χ

1H (n,n),
1H (n,n)

238U (n,γ),
238U (n,γ)

235U (n,γ),
235U (n,γ)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
co

va
ria

nc
e

Σf uncertainty 0.964 +- 0.004 %

238U (n,n’),
238U (n,n’)

238U (n,γ),
238U (n,γ)

235U χ,
235U χ

1H (n,n),
1H (n,n)

235U (n,γ),
235U (n,γ)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
co

va
ria

nc
e

Σf uncertainty 0.871 +- 0.005 %

Figure 7. HFP pin-cells: Top contributors (as a fraction of the total covariance) to the uncer-
tainty of the homogenized macroscopic fission cross in the TMI1 pin-cell (left) and in the PB2
pin-cell (right).
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6.2 Assemblies

The single assembly test cases included the Peach Bottom 2 and Three Mile Island 1 assembly
problems from the UAM-benchmark phase I specifications [13].

Figure 8. Rodded Peach Bottom 2 and Three Mile Island 1 assembly geometries to scale with
each other.

The assembly geometries for the PB2 and TMI1 cases are shown in Fig. 8. The PB2 lattice
contained five different fuel types one of which contained gadolinia as a burnable absorber (the
rods indicated in green). A cruciform control rod with boron carbide as the absorber material
could be included in the wide-wide corner of the geometry along the southern and western sides
of the geometry. The TMI1 lattice contained two different fuel types one of which contained
gadolinia as a burnable absorber (the rods indicated in green). Sixteen finger-type AIC control
rods could be inserted into the guide tubes of the assembly.

Both HZP and HFP conditions for the unrodded and rodded geometries were modelled for both
assemblies.

6.2.1 Considered responses

The responses for which the nuclear data uncertainty was calculated are based on the UAM-
problem definition:

• Effective multiplication factor (keff)

• Macroscopic two-group fission cross section.

• Macroscopic two-group absorption cross section.

• Macroscopic two-group elastic scattering cross section.

• Macroscopic two-group fission neutron production cross section.

• Two-group assembly discontinuity factors.

The calculation of the effective multiplication factor sensitivity/uncertainty is switched on as
previously.
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Macroscopic two-group cross sections

The sensitivities/uncertainties for the macroscopic two-group cross sections were calculated by
first setting up a default two-group energy structure

ene myGS 1 1e -11 6.25e-7 2e1

adding the detectors for the two-group reaction rates and flux

det FIS dr -6 void de myGS
det CPT dr -2 void de myGS
det ELA dr -3 void de myGS
det NSF dr -7 void de myGS
det FLX de myGS

and specifying the correct reaction rate ratios as sensitivity responses

sens resp detratio FISXS FIS FLX
sens resp detratio CPTXS CPT FLX
sens resp detratio ELAXS ELA FLX
sens resp detratio NSFXS NSF FLX

The sensitivity/uncertainty for the macroscopic absorption cross section for each group is again
calculated from those of the macroscopic capture and fission cross sections.

Two-group assembly discontinuity factors

As the homogenization was conducted in an infinite lattice model, the ADFs were calculated
according to Eq. 43. Here the response is the ratio of a surface detector and a volumetric
detector.

Based on symmetry conditions the assembly discontinuity factors were calculated for the south
and east sides of the assembly. The ADFs for the two sides should be equal in the TMI1-
assembly and differ in the PB2 assembly.

We’ll first set up surface flux detectors for the southern surface and eastern surface of the
geometry using the two-group energy structure:

det FLXS de myGS ds sSOUTH -2
det FLXE de myGS ds sEAST -2

Here the surfaces sSOUTH and sEAST are superimposed planes covering the southern and east-
ern edge of the geometry respectively. We’ll use the volumetric flux detector also used in the
two-group macroscopic cross section calculation to set up the reaction rate ratios as sensitivity
responses:

sens resp detratio ADFS FLXS FLX
sens resp detratio ADFE FLXE FLX

6.2.2 Results

The ADF-values calculated as a ratio of the surface flux and volumetric flux detector values
needed to be scaled by the V/Sk term in Eq. 43, i.e. the ratio between geometry volume and
surface area.
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Figure 9. TMI1 assembly at HZP: Top contributors (as a fraction of the total covariance) to
the uncertainty of the fast capture cross section for the unrodded (left) and the rodded (right)
geometries.

The results for the unrodded and rodded TMI1 assemblies are shown in Tables 3 and 4. As the
values of the group coefficients were calculated from the reaction rates and fluxes in a post-
processing step, no information of their statistical uncertainty is available. This is also true for
the nuclear data uncertainty of the macroscopic absorption cross section which was calculated
from the nuclear data uncertainties of the fission and capture cross sections.

When possible, the results are compared to those calculated by Maria Pusa using CASMO-4E
and SCALE-6.0 based covariance data as reported in [14]. It should be noted that as both the
transport code and the input covariance data are different between the two results, no good
match between the two should be expected. Even so, the calculated values for the group con-
stants are similar between the two methods. The propagated nuclear data uncertainties are
larger in the fast group in both the Serpent and the CASMO results with the Serpent propa-
gated uncertainties being typically slightly higher. The larger nuclear data uncertainties in the
Serpent results potentially come from the newer covariance data libraries containing additional
covariance data (additional known uncertainties) compared to the old libraries.

In future, the results of this uncertainty propagation implementation should be compared to a
sampling based method using the same covariance data libraries and Serpent as the transport
code.

The largest nuclear data uncertainty is found in the fast capture cross section being approxi-
mately 1.41 % in the unrodded case and 1.36 % in the rodded case. The top contributors to this
uncertainty are shown in Fig. 9. The largest contributor in both cases is the inelastic scattering
cross section of 238U followed by the fission spectrum of 235U and the radiative capture cross
section of 238U.

The nuclear data uncertainty of the effective multiplication factor was between 0.5 and 0.6
percent for the two cases. The main contributors for the nuclear data uncertainty in the multipli-
cation factor is shown in Fig. 10.
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Table 3. TMI1 HZP unrodded

Parameter Value Nuclear data uncertainty (percent) Ref. value [14] Ref. uncertainty [14]
± 2σ statistical uncertainty (CASMO-4E) (CASMO-4E)

keff 1.39501 0.53311 ± 0.00035 1.411 0.4909
Σela,1 0.53798 1.06682 ± 0.00026 N/A N/A
Σela,2 1.32279 0.20971 ± 0.00023 N/A N/A
Σc,1 0.00702 1.40617 ± 0.00141 N/A N/A
Σc,2 0.03265 0.80304 ± 0.00010 N/A N/A
Σa,1 0.01062 1.06468 ± 0.00000 0.01029 0.7487
Σa,2 0.11100 0.46259 ± 0.00000 0.1084 0.2164
Σf,1 0.00360 0.39799 ± 0.00040 N/A N/A
Σf,2 0.07835 0.32073 ± 0.00012 N/A N/A
(νΣf)1 0.00908 0.73784 ± 0.00036 0.00885 0.5152
(νΣf)2 0.19092 0.50139 ± 0.00008 0.1878 0.4447
ADFS,1 0.97704 0.27540 ± 0.00358 N/A N/A
ADFS,2 1.04002 0.66647 ± 0.01133 N/A N/A
ADFE,1 0.97702 0.27188 ± 0.00353 N/A N/A
ADFE,2 1.04013 0.65505 ± 0.00983 N/A N/A

Table 4. TMI1 HZP rodded

Parameter Value Nuclear data uncertainty (percent) Ref. value [14] Ref. uncertainty [14]
± 2σ statistical uncertainty (CASMO-4E) (CASMO-4E)

keff 1.05810 0.58728 ± 0.00065 1.083 0.5038
Σela,1 0.52472 1.05153 ± 0.00025 N/A N/A
Σela,2 1.26387 0.22369 ± 0.00025 N/A N/A
Σc,1 0.00974 1.35667 ± 0.00133 N/A N/A
Σc,2 0.05787 0.48911 ± 0.00038 N/A N/A
Σa,1 0.01321 1.10938 ± 0.00000 0.01275 0.7113
Σa,2 0.13781 0.39460 ± 0.00000 0.13280 0.1871
Σf,1 0.00347 0.41624 ± 0.00037 N/A N/A
Σf,2 0.07994 0.32619 ± 0.00016 N/A N/A
(νΣf)1 0.00878 0.76224 ± 0.00037 0.00857 0.5251
(νΣf)2 0.19478 0.50488 ± 0.00010 0.1909 0.4461
ADFS,1 1.01618 0.32875 ± 0.00394 N/A N/A
ADFS,2 1.37894 0.81794 ± 0.01227 N/A N/A
ADFE,1 1.01644 0.31864 ± 0.00414 N/A N/A
ADFE,2 1.37877 0.79338 ± 0.01111 N/A N/A
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Figure 10. TMI1 assembly at HZP: Top contributors (as a fraction of the total covariance) to the
uncertainty of the effective multiplication factor for the unrodded (left) and the rodded (right)
geometries.

Similar analyses can be conducted for all of the different simulated cases and result variables
but without relevant reference data or application, such analyses are of limited interest. The
other results for the assembly cases are included in the appendices.
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7. Limitations and future work

As noted previously, the derivations and implementations hold only for sensitivities of non-
leakage-corrected group constants. In order to estimate the uncertainties of leakage corrected
group constants a separate methodology needs to be derived for propagating the infinite spec-
trum multi-group uncertainties through the leakage correction.

This methodology cannot be easily used for propagating the uncertainties through a burnup
calculation. While it is possible (although computationally demanding) to calculate the uncer-
tainties in the different transmutation cross sections and depletion fluxes used in forming the
Bateman equations, propagating the uncertainties to the solution of the Bateman equations
would require a significant amount of additional work and derivation and might not be very
feasible.

The calculation of several sensitivities was not implemented in this work as they could be only
calculated as sensitivities of detector ratios, for which the required detector response is not
available yet. The actual calculation of these group constants is achieved without the use of de-
tectors, i.e. the reaction rates are scored separately outside the detector scoring routines, e.g.
in scorepoison.c and scoregc.c. The calculation of the sensitivities requires either adding the
required detector responses and calculating the sensitivities using the automatic detector ratio
sensitivity calculation routines or calculating the sensitivities separately, e.g. in scorepoison.c
and scoregc.c. The missing group constants and required detector responses are listed in the
following:

• Sensitivity of the absorption cross section requires a detector response for tallying the
absorption reaction rate. Currently the sensitivity can be calculated from the sensitivities
of fission and capture cross sections in post-batch processing.

• Sensitivity of the slowing down cross section requires a detector response for tallying the
slowing down reaction rate.

• Sensitivity of the fission poison production cross section requires a detector response for
tallying the fission poison production rate.

• Sensitivity of the out-scatter diffusion coefficient requires a detector response for tallying
the P1 scattering cross section.

The automatic set up of the correct sensitivity calculation responses when group constants are
being generated is also left to a future time. At the same point of time it would be possible
to implement routines for the automatic direct and inverse energy group condensation of the
sensitivities, which would also need the automatic set up of the multi-group and few-group
structures that would be used for the sensitivity calculation.

A future optimization would be to use eigendecomposition of the covariance matrices to score
the uncertainty contributions from each energy group and reaction mode during neutron trans-
port in effect applying the Sandwich rule (Eq. 8) during neutron transport. This would eliminate
the need to calculate and store the sensitivity vectors, which can save computation time and
will certainly save memory. See [15] for a continuous energy example of this.
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8. Summary

The Serpent Monte Carlo code was extended to read in multi-group nuclear covariance data
and use it with previously implemented sensitivity calculation capabilities to propagate nuclear
data uncertainties into several different group constants that can be expressed as reaction rate
or detector tally value ratios. The uncertainty propagation can also be conducted for the delayed
neutron parameters βeff and λ as well as the prompt neutron lifetime `eff.

Several other extensions were also implemented that pave the road for implementing auto-
mated uncertainty propagation for generated group and time constants. These include auto-
matically calculating the direct term of the reaction rate sensitivity, adding support for automatic
treatment of multi-bin reaction rate ratios as sensitivity responses and including the calcula-
tion of sensitivities for the group-wise delayed neutron fractions and delayed neutron precursor
decay constants.

As several group constants could not be calculated using the available detector response func-
tions, the theoretical work required for calculating the sensitivities was conducted and listed. In
the future, the required detector response functions may either be added or a separate treat-
ment can be implemented to calculate these sensitivities separately from the automatic reaction
rate ratio sensitivities.

The capabilities were demonstrated in calculations where detectors were set up to tally reac-
tion rates and fluxes and the group constants were calculated as a post processing step. This
approach was used to make use of the previously implemented capability of calculating sen-
sitivities of detector tally value ratios. In the future, the process can be implemented into the
routines responsible specifically for group constant generation, where no detectors are used.

Comparisons of several calculated uncertainty values against previous results obtained with
CASMO-4E using an older covariance library were promising, but the differences in the exact
values are noticeable as can be expected due to the different transport solver and covariance
data utilized.

In the future, a sampling based method should be used to verify the propagated nuclear data
uncertainties.
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Appendices

A Pin cell HZP results

Table A.1. PB2 pin-cell HZP

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.30547 0.60301 ± 0.00145
σc,5 1.13300 1.73072 ± 0.00260
σc,8 0.08809 1.46947 ± 0.00367
σa,5 6.33737 1.31072 ± 0.00000
σa,8 0.09832 1.84291 ± 0.00000
σf,5 5.20437 1.21928 ± 0.00378
σf,8 0.01023 5.05866 ± 0.00556
Σc 0.01035 1.22853 ± 0.00270
Σa 0.02201 1.04052 ± 0.00000
Σf 0.01166 0.87367 ± 0.00341

Table A.2. TMI1 pin-cell HZP

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.40630 0.55094 ± 0.00127
σc,5 0.90231 1.78068 ± 0.00267
σc,8 0.08971 1.50794 ± 0.00422
σa,5 4.73510 1.37493 ± 0.00000
σa,8 0.10104 1.88909 ± 0.00000
σf,5 3.83279 1.27941 ± 0.00397
σf,8 0.01133 4.90764 ± 0.00589
Σc 0.01031 1.30080 ± 0.00325
Σa 0.02404 1.11108 ± 0.00000
Σf 0.01373 0.96862 ± 0.00378
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B Peach Bottom 2 assembly HZP results

Table B.1. PB2 assembly HZP unrodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.11286 0.59842 ± 0.00066
Σela,1 0.54559 0.99027 ± 0.00035
Σela,2 1.44781 0.17283 ± 0.00026
Σc,1 0.00527 1.31028 ± 0.00210
Σc,2 0.02666 0.61558 ± 0.00025
Σa,1 0.00721 1.20773 ± 0.00000
Σa,2 0.05520 0.47000 ± 0.00000
Σf,1 0.00194 0.92914 ± 0.00121
Σf,2 0.02854 0.33404 ± 0.00028
(νΣf)1 0.00499 1.41842 ± 0.00104
(νΣf)2 0.06955 0.50990 ± 0.00019
ADFS,1 0.88721 0.34919 ± 0.00489
ADFS,2 1.77478 0.34909 ± 0.00559
ADFE,1 0.95615 0.23841 ± 0.00715
ADFE,2 1.29269 0.39986 ± 0.00680

Table B.2. PB2 assembly HZP rodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 0.86308 0.59806 ± 0.00072
Σela,1 0.53723 0.98126 ± 0.00029
Σela,2 1.36442 0.18591 ± 0.00024
Σc,1 0.00788 1.14615 ± 0.00183
Σc,2 0.04237 0.45495 ± 0.00045
Σa,1 0.00981 1.09716 ± 0.00000
Σa,2 0.07517 0.40288 ± 0.00000
Σf,1 0.00193 0.89704 ± 0.00090
Σf,2 0.03280 0.33561 ± 0.00023
(νΣf)1 0.00496 1.38504 ± 0.00080
(νΣf)2 0.07992 0.51105 ± 0.00015
ADFS,1 0.74092 0.78946 ± 0.00568
ADFS,2 0.49143 0.74350 ± 0.01264
ADFE,1 1.05622 0.28033 ± 0.00308
ADFE,2 1.98379 0.39268 ± 0.00432
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C Peach Bottom 2 assembly HFP results

Table C.1. PB2 assembly HFP unrodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.06978 0.66871 ± 0.00087
Σela,1 0.39079 1.04209 ± 0.00031
Σela,2 0.89930 0.22523 ± 0.00021
Σc,1 0.00511 1.39744 ± 0.00182
Σc,2 0.02438 0.62338 ± 0.00031
Σa,1 0.00692 1.27818 ± 0.00000
Σa,2 0.05239 0.47045 ± 0.00000
Σf,1 0.00181 0.94153 ± 0.00104
Σf,2 0.02801 0.33736 ± 0.00023
(νΣf)1 0.00464 1.39384 ± 0.00091
(νΣf)2 0.06826 0.51213 ± 0.00015
ADFS,1 0.93725 0.25592 ± 0.00486
ADFS,2 1.67003 0.38280 ± 0.00612
ADFE,1 0.97447 0.20141 ± 0.00342
ADFE,2 1.20622 0.44337 ± 0.01286

Table C.2. PB2 assembly HFP rodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 0.76654 0.75575 ± 0.00121
Σela,1 0.39026 1.02301 ± 0.00028
Σela,2 0.85482 0.24475 ± 0.00022
Σc,1 0.00760 1.27706 ± 0.00153
Σc,2 0.04126 0.44842 ± 0.00054
Σa,1 0.00937 1.21495 ± 0.00000
Σa,2 0.07256 0.40211 ± 0.00000
Σf,1 0.00176 0.94696 ± 0.00091
Σf,2 0.03130 0.34106 ± 0.00028
(νΣf)1 0.00452 1.40023 ± 0.00080
(νΣf)2 0.07628 0.51466 ± 0.00019
ADFS,1 0.80977 0.58728 ± 0.00411
ADFS,2 0.47754 0.83391 ± 0.01251
ADFE,1 1.04964 0.25661 ± 0.00282
ADFE,2 1.85195 0.47870 ± 0.00622
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D Three Mile Island 1 assembly HFP results

Table D.1. TMI1 assembly HFP unrodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.37892 0.53934 ± 0.00036
Σela,1 0.52908 1.07159 ± 0.00028
Σela,2 1.28959 0.21318 ± 0.00023
Σc,1 0.00719 1.41224 ± 0.00140
Σc,2 0.03221 0.80550 ± 0.00010
Σa,1 0.01078 1.07555 ± 0.00000
Σa,2 0.10967 0.46384 ± 0.00000
Σf,1 0.00358 0.39977 ± 0.00040
Σf,2 0.07746 0.32177 ± 0.00012
(νΣf)1 0.00905 0.73925 ± 0.00035
(νΣf)2 0.18874 0.50206 ± 0.00008
ADFS,1 0.97768 0.27462 ± 0.00384
ADFS,2 1.03774 0.67032 ± 0.00938
ADFE,1 0.97760 0.26980 ± 0.00351
ADFE,2 1.03827 0.67701 ± 0.01151

Table D.2. TMI1 assembly HFP rodded

Parameter Value Nuclear data uncertainty (percent)
± 2σ statistical uncertainty

keff 1.04259 0.60130 ± 0.00427
Σela,1 0.51630 1.05677 ± 0.00180
Σela,2 1.23284 0.22960 ± 0.00158
Σc,1 0.00988 1.37125 ± 0.00617
Σc,2 0.05754 0.48665 ± 0.00433
Σa,1 0.01334 1.12260 ± 0.00000
Σa,2 0.13653 0.39392 ± 0.00000
Σf,1 0.00346 0.41264 ± 0.00227
Σf,2 0.07899 0.32637 ± 0.00101
(νΣf)1 0.00875 0.75746 ± 0.00265
(νΣf)2 0.19248 0.50513 ± 0.00066
ADFS,1 1.01684 0.38258 ± 0.07652
ADFS,2 1.37552 0.86463 ± 0.07609
ADFE,1 1.01564 0.30500 ± 0.02623
ADFE,2 1.37345 0.79002 ± 0.04898
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